Python科学计算常用的工具包有哪些?1、 NumPy
NumPy几乎是一个无法回避的科学计算工具包,最常用的也许是它的N维数组对象,其他还包括一些成熟的函数库 , 用于整合C/C和Fortran代码的工具包,线性代数、傅里叶变换和随机数生成函数等 。NumPy提供了两种基本的对象:ndarray(N-dimensional array object)和 ufunc(universal function object) 。ndarray是存储单一数据类型的多维数组,而ufunc则是能够对数组进行处理的函数 。
2、SciPy:Scientific Computing Tools for Python
“SciPy是一个开源的Python算法库和数学工具包,SciPy包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算 。其功能与软件MATLAB、Scilab和GNU Octave类似 。Numpy和Scipy常常结合着使用 , Python大多数机器学习库都依赖于这两个模块 。”—-引用自“Python机器学习库”
3、 Matplotlib
matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图 。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中 。Matplotlib可以配合ipython shell使用,提供不亚于Matlab的绘图体验,总之用过了都说好 。
关于Python科学计算常用的工具包有哪些 , 环球青藤小编就和大家分享到这里了,学习是永无止境的,学习一项技能更是受益终身 , 所以,只要肯努力学,什么时候开始都不晚 。如果您还想继续了解关于python编程的学习方法及素材等内容,可以点击本站其他文章学习 。
python有哪些开发工具想要学会python,不仅要学习相关的基础知识和教程,对python各种工具的熟悉使用才能让你在工作中迅速成长!有很多优秀的开发者前辈,为我们提供了好用的python工具,来帮我们更方便的实现开发想法,下面就给大家分享5个好用的python开发工具!
工具一:Anaconda
这个工具就是用来解决Python 开发过程中遇到各种包管理和版本的问题,为了解决很多 Windows 平台的安装包无法正常使用 , 必须要有Anoconda,它包含了一个包管理工具、一个Python管理环境和常用数据科学包 , 是数据分析的标配!
工具二:Skulpt
这个工具是用 Javascript 实现在线 Python 执行环境,实现了在浏览器中轻松运行 Python 代码 。搭配使用CodeMirror 编辑器就类似于一个基本的在线Python编辑运行环境 。
工具三:Python Tutor
这款工具是由 Philip Guo 开发的免费教育工具,适用于python小白,能够帮助小白解决一些编程学习中的基础障碍,还能帮助小白理解每一行源代码在程序执行时在计算机中的过程 。
大部分被教师或学生使用,但也适用于python小白,可以直接在 Web 浏览器中编写 Python 代码,可以把不知道如何在内存中如何运行的代码,拷贝到Tutor里进行可视化执行,有助于小白对基础的扎实掌握 。
工具四:IPython
这款工具是for Humans 的 Python 交互式解释器,功能非常强大,能够支持变量自动补全 , 自动缩进,支持 bash shell 命令,内置了许多实用功能和函数,同时它也是科学计算和交互可视化的最佳平台 。
它还具有以下特性:
·更强的交互 shell(基于 Qt 的终端);
·一个基于浏览器的记事本,支持代码 , 纯文本,数学公式,内置图表和其他富媒体;
·支持交互数据可视化和图形界面工具;
·灵活,可嵌入解释器加载到任意一个自有工程里;
·简单易用,用于并行计算的高性能工具 。
工具五:Jupyter Notebook
看名字就知道Notebook,这款工具就像一个草稿本,能储存文本注释、数学方程、代码和可视化内容等,然后以 Web 的方式呈现 。有数据分析、机器学习需求同学的必备工具 。
python学习网,大量的免费python视频教程,欢迎在线学习!
python常用函数包有哪些?一些python常用函数包:
1、Urllib3
Urllib3是一个 Python 的 HTTP 客户端 , 它拥有 Python 标准库中缺少的许多功能:
线程安全
连接池
客户端 SSL/TLS 验证
使用分段编码上传文件
用来重试请求和处理 HTTP 重定向的助手
支持 gzip 和 deflate 编码
HTTP 和 SOCKS 的代理支持
2、Six
six 是一个是 Python 2 和 3 的兼容性库 。这个项目旨在支持可同时运行在 Python 2 和 3 上的代码库 。它提供了许多可简化 Python 2 和 3 之间语法差异的函数 。
3、botocore、boto3、s3transfer、awscli
Botocore是 AWS 的底层接口 。Botocore是 Boto3 库(#22)的基?。?后者让你可以使用 Amazon S3 和 Amazon EC2 一类的服务 。Botocore 还是 AWS-CLI 的基础 , 后者为 AWS 提供统一的命令行界面 。
S3transfer(#7)是用于管理 Amazon S3 传输的 Python 库 。它正在积极开发中,其介绍页面不推荐人们现在使用,或者至少等版本固定下来再用,因为其 API 可能发生变化,在次要版本之间都可能更改 。Boto3、AWS-CLI和其他许多项目都依赖s3transfer 。
4、Pip
pip是“Pip Installs Packages”的首字母递归缩写 。
pip很容易使用 。要安装一个包只需pip install package name即可,而删除包只需pip uninstall package name即可 。
最大优点之一是它可以获取包列表,通常以requirements.txt文件的形式获取 。该文件能选择包含所需版本的详细规范 。大多数 Python 项目都包含这样的文件 。
如果结合使用pip与virtualenv(列表中的 #57),就可以创建可预测的隔离环境,同时不会干扰底层系统,反之亦然 。
5、Python-dateutil
python-dateutil模块提供了对标准datetime模块的强大扩展 。我的经验是,常规的Python datetime缺少哪些功能,python-dateutil就能补足那一块 。
6、Requests
Requests建立在我们的 #1 库——urllib3基础上 。它让 Web 请求变得非常简单 。相比urllib3来说,很多人更喜欢这个包 。而且使用它的最终用户可能也比urllib3更多 。后者更偏底层,并且考虑到它对内部的控制级别 , 它一般是作为其他项目的依赖项 。
7、Certifi
近年来,几乎所有网站都转向 SSL,你可以通过地址栏中的小锁符号来识别它 。加了小锁意味着与该站点的通信是安全和加密的 , 能防止窃听行为 。
8、Idna
根据其 PyPI 页面,idna提供了“对 RFC5891 中指定的应用程序中国际化域名(IDNA)协议的支持 。”
【python工具函数模具 python工具箱】IDNA的核心是两个函数:ToASCII和ToUnicode 。ToASCII会将国际 Unicode 域转换为 ASCII 字符串 。ToUnicode则逆转该过程 。在IDNA包中,这些函数称为idna.encode()和idna.decode()
9、PyYAML
YAML是一种数据序列化格式 。它的设计宗旨是让人类和计算机都能很容易地阅读代码——人类很容易读写它的内容 , 计算机也可以解析它 。
PyYAML是 Python 的YAML解析器和发射器,这意味着它可以读写YAML 。它会把任何 Python 对象写成YAML:列表、字典,甚至是类实例都包括在内 。
10、Pyasn1
像上面的IDNA一样,这个项目也非常有用:
ASN.1 类型和 DER/BER/CER 编码(X.208)的纯 Python 实现
所幸这个已有数十年历史的标准有很多信息可用 。ASN.1是 Abstract Syntax Notation One 的缩写 , 它就像是数据序列化的教父 。它来自电信行业 。也许你知道协议缓冲区或 Apache Thrift?这就是它们的 1984 年版本 。
11、Docutils
Docutils是一个模块化系统,用来将纯文本文档处理为很多有用的格式 , 例如 HTML、XML 和 LaTeX 等 。Docutils能读取reStructuredText格式的纯文本文档,这种格式是类似于 MarkDown 的易读标记语法 。
12、Chardet
你可以用chardet模块来检测文件或数据流的字符集 。比如说 , 需要分析大量随机文本时,这会很有用 。但你也可以在处理远程下载的数据,但不知道用的是什么字符集时使用它 。
13、RSA
rsa包是一个纯 Python 的 RSA 实现 。它支持:
加密和解密
签名和验证签名
根据 PKCS#1 1.5 版生成密钥
它既可以用作 Python 库,也能在命令行中使用 。
14、Jmespath
JMESPath,发音为“James path”,使 Python 中的 JSON 更容易使用 。它允许你声明性地指定如何从 JSON 文档中提取元素 。
15、Setuptools
它是用于创建 Python 包的工具 。不过,其文档很糟糕 。它没有清晰描述它的用途,并且文档中包含无效链接 。最好的信息源是这个站点,特别是这个创建 Python 包的指南 。
16、Pytz
像dateutils一样,这个库可帮助你处理日期和时间 。有时候 , 时区处理起来可能很麻烦 。幸好有这样的包,可以让事情变得简单些 。
17、Futures
从 Python 3.2 开始,python 提供current.futures模块,可帮助你实现异步执行 。futures 包是该库适用于 Python 2 的 backport 。它不适用于 Python3 用户,因为 Python 3 原生提供了该模块 。
18、Colorama
使用 Colorama,你可以为终端添加一些颜色:
更多Python知识请关注Python自学网
关于python工具函数模具和python工具箱的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站 。
推荐阅读
- 直播间开播用什么音乐好,直播间开播用什么音乐好听
- 华为手机u盘下载什么软件下载,华为手机下载u盘操作
- 游戏定制开发成本高吗,游戏定制费用
- 怎么创建oracle自增 oracle添加自增id数据
- 视频监控有什么要求吗,视频监控干什么的
- linux文本定位命令,linux命令定位到指定位置
- mysql使用主键作为索引,mysql主键索引类型
- 怎么看mysql装上没有 怎么看自己mysql装好没有
- 长治品牌推广如何做,怎样推广品牌策划方案