驳狗屎文 "我为什么放弃Go语言此篇文章流传甚广, 其实里面没啥干货,而且里面很多观点是有问题的. 这个文章在 golang-china 很早就讨论过了.
最近因为 Rust 1.0 和 1.1 的发布, 导致这个文章又出来毒害读者.
所以写了这篇反驳文章, 指出其中的问题.
有好几次,当我想起来的时候,总是会问自己:我为什么要放弃Go语言?这个决定是正确的吗?是明智和理性的吗?其实我一直在认真思考这个问题 。
开门见山地说,我当初放弃Go语言(golang),就是因为两个“不爽”:第一 , 对Go语言本身不爽;第二,对Go语言社区里的某些人不爽 。毫无疑问,这是非常主观的结论 。但是我有足够详实的客观的论据,用以支撑这个看似主观的结论 。
文末附有本文更新日志 。
确实是非常主观的结论, 因为里面有不少有问题的观点(用来忽悠Go小白还行).
第0节:我的Go语言经历
先说说我的经历吧,以避免被无缘无故地当作Go语言的低级黑 。
2009年底,Go语言(golang)第一个公开版本发布,笼罩着“Google公司制造”的光环 , 吸引了许多慕名而来的尝鲜者,我(Liigo)也身居其中,笼统的看了一些Go语言的资料,学习了基础的教程,因对其语法中的分号和花括号不满 , 很快就遗忘掉了,没拿它当一回事 。
在2009年Go刚发布时, 确实是因为“Google公司制造”的光环而吸引了(包括文章作者和诸多IT采访人员)很多低级的尝鲜者.
还好, 经过5年的发展, 这些纯粹因为光环来的投机者所剩已经不多了(Google趋势).
目前, 真正的Go用户早就将Go用于实际的生产了.
说到 其语法中的分号和花括号不满, 我想说这只是你的 个人主观感受, 还有很多人对Go的分号和花括号很满意,
包括水果公司的的 Swift 的语言设计者也很满意这种风格(Swift中的分号和花括号和Go基本相同).
如果只谈 个人主观感受, 我也可以说 Rust 的 fn 缩写也很蛋疼!
两年之后 , 2011年底,Go语言发布1.0的计划被提上日程,相关的报道又多起来 , 我再次关注它,重新评估之后决定深入参与Go语言 。我订阅了其users、nuts、dev、commits等官方邮件组,坚持每天阅读其中的电子邮件 , 以及开发者提交的每一次源代码更新,给Go提交了许多改进意见 , 甚至包括修改Go语言编译器源代码直接参与开发任务 。如此持续了数月时间 。
这个到是事实, 在 golang-china 有不少吵架的帖子, 感兴趣的可以去挖下, 我就不展开说了.
到2012年初,Go 1.0发布 , 语言和标准库都已经基本定型,不可能再有大幅改进,我对Go语言未能在1.0定型之前更上一个台阶、实现自我突破,甚至带着诸多明显缺陷走向1.0 , 感到非常失望,因而逐渐疏远了它(所以Go 1.0之后的事情我很少关心) 。后来看到即将发布的Go 1.1的Release Note , 发现语言层面没有太大改变 , 只是在库和工具层面有所修补和改进,感到它尚在幼年就失去成长的动力,越发失望 。外加Go语言社区里的某些人 , 其中也包括Google公司负责开发Go语言的某些人 , 其态度、言行,让我极度厌恶 , 促使我决绝地离弃Go语言 。
真的不清楚楼主说的可以在 Go1.0 之前短时间内能实现的 重大改进和诸多明显缺陷 是什么.
如果是楼主说前面的 其语法中的分号和花括号不满 之类的重大改进, 我只能说这只是你的 个人主观感受 而已,
你的很多想法只能说服你自己, 没办法说服其他绝大部分人(不要以为像C或Rust那样什么特性都有就NB了, 各种NB特性加到一起只能是 要你命3000, 而绝对不会是什么 银弹).
Go 1.1的Release Note , 发现语言层面没有太大改变. 语言层没有改变是是因为 Go1 作出的向后兼容的承诺. 对于工业级的语言来说, Go1 这个只能是优点. 如果连语言层在每个版本都会出现诸多大幅改进, 那谁还敢用Go语言来做生产开发呢(我承认Rust的改动很大胆, 但也说明了Rust还处于比较幼稚和任性的阶段)?
说 Go语言社区里的某些人固执 的观点我是同意的. 但是这些 固执 的人是可以讲道理的, 但是他们对很多东西的要求很高(特别是关于Go的设计哲学部分).
只要你给的建议有依据(语言的设计哲学是另外一回事情), 他们绝对不会盲目的拒绝(只是讨论的周期会比较长).
关于楼主提交的给Go文件添加BOM的文章, 需要补充说明下.
在Go1.0发布的时候, Go语言的源文件(.go)明确要求必须是UTF8编码的, 而且是无BOM的UTF8编码的.
注意: 这个 无BOM的UTF8编码 的限制仅仅是 针对 Go语言的源文件(.go).
【go语言内存问题 go语言内存不断升高】这个限制并不是说不允许用户处理带BOM的UTF8的txt文件!
我觉得对于写Go程序来说, 这个限制是没有任何问题的, 到目前为止, 我还从来没有使用过带BOM的.go文件.
不仅是因为带BOM的.go文件没有太多的意义, 而且有很多的缺陷.
BOM的原意是用来表示编码是大端还是小端的, 主要用于UTF16和UTF32. 对于 UTF8 来说, BOM 没有任何存在的意义(正是Go的2个作者发明了UTF8, 彻底解决了全球的编码问题).
但是, 在现实中, 因为MS的txt记事本, 对于中文环境会将txt(甚至是C/C源文件)当作GBK编码(GBK是个烂编码),
为了区别到底是GBK还是UTF8, MS的记事本在前面加了BOM这个垃圾(被GBK占了茅坑), 这里的bom已经不是表示字节序本意了. 不知道有没有人用ms的记事本写网页, 然后生成一个带bom的utf8网页肯定很有意思.
这是MS的记事本的BUG: 它不支持生成无BOM的UTF8编码的文本文件!
这些是现实存在的带BOM的UTF8编码的文本文件, 但是它们肯定都不是Go语言源文件!
所以说, Go语言的源文件即使强制限制了无BOM的UTF8编码要求, 也是没有任何问题的(而且我还希望有这个限制).
虽然后来Go源文件接受带BOM的UTF8了, 但是运行 go fmt 之后, 还是会删除掉BOM的(因为BOM就是然并卵). 也就是说 带 BOM 的 Go 源文件是不符合 Go语言的编码风格的, go fmt 会强制删除 BOM 头.
前面说了BOM是MS带来的垃圾, 但是BOM的UTF8除了然并卵之外还有很多问题, 因为BOM在string的开头嵌入了垃圾,
导致正则表达式, string的链接运算等操作都被会被BOM这个垃圾所污染. 对于.go语言, 即使代码完全一样, 有BOM和无BOM会导致文件的MD5之类的校验码不同.
所以, 我觉得Go用户不用纠结BOM这个无关紧要的东西.
在上一个10年,我(Liigo)在我所属的公司里,深度参与了两个编程语言项目的开发 。我想,对于如何判断某个编程语言的优劣,或者说至少对于如何判断某个编程语言是否适合于我自己,我应该还是有一点发言权的 。
第1节:我为什么对Go语言不爽?
Go语言有很多让我不爽之处,这里列出我现在还能记起的其中一部分,排名基本上不分先后 。读者们耐心地看完之后,还能淡定地说一句“我不在乎”吗?
1.1 不允许左花括号另起一行
关于对花括号的摆放 , 在C语言、C、Java、C#等社区中,十余年来存在持续争议,从未形成一致意见 。在我看来,这本来就是主观倾向很重的抉择 , 不违反原则不涉及是非的情况下,不应该搞一刀切,让程序员或团队自己选择就足够了 。编程语言本身强行限制,把自己的喜好强加给别人,得不偿失 。无论倾向于其中任意一种,必然得罪与其对立的一群人 。虽然我现在已经习惯了把左花括号放在行尾 , 但一想到被禁止其他选择,就感到十分不爽 。Go语言这这个问题上,没有做到“团结一切可以团结的力量”不说,还有意给自己树敌,太失败了 。
我觉得Go最伟大的发明是 go fmt, 从此Go用户不会再有花括弧的位置这种无聊争论了(当然也少了不少灌水和上tiobe排名的机会).
是这优点, Swift 语言也使用和 Go 类似的风格(当然楼主也可能鄙视swift的作者).
1.2 编译器莫名其妙地给行尾加上分号
对Go语言本身而言 , 行尾的分号是可以省略的 。但是在其编译器(gc)的实现中,为了方便编译器开发者,却在词法分析阶段强行添加了行尾的分号 , 反过来又影响到语言规范,对“怎样添加分号”做出特殊规定 。这种变态做法前无古人 。在左花括号被意外放到下一行行首的情况下,它自动在上一行行尾添加的分号,会导致莫名其妙的编译错误(Go 1.0之前),连它自己都解释不明白 。如果实在处理不好分号,干脆不要省略分号得了;或者,Scala和JavaScript的编译器是开源的,跟它们学学怎么处理省略行尾分号可以吗?
又是楼主的 个人主观感受, 不过我很喜欢这个特性. Swift 语言也是类似.
1.3 极度强调编译速度,不惜放弃本应提供的功能
程序员是人不是神,编码过程中免不了因为大意或疏忽犯一些错 。其中有一些 , 是大家集体性的很容易就中招的错误(Go语言里的例子我暂时想不起来,C里的例子有“基类析构函数不是虚函数”) 。这时候编译器应该站出来,多做一些检查、约束、核对性工作,尽量阻止常规错误的发生,尽量不让有潜在错误的代码编译通过,必要时给出一些警告或提示,让程序员留意 。编译器不就是机器么,不就是应该多做脏活累活杂活、减少人的心智负担么?编译器多做一项检查,可能会避免数十万程序员今后多年内无数次犯同样的错误 , 节省的时间不计其数,这是功德无量的好事 。但是Go编译器的作者们可不这么想,他们不愿意自己多花几个小时给编译器增加新功能,觉得那是亏本,反而减慢了编译速度 。他们以影响编译速度为由,拒绝了很多对编译器改进的要求 。典型的因噎废食 。强调编译速度固然值得赞赏 , 但如果因此放弃应有的功能,我不赞成 。
编译速度是很重要的, 如果编译速度够慢, 语言再好也不会有人使用的.
比如C/C的增量编译/预编译头文件/并发编译都是为了提高编译速度.
Rust1.1 也号称 比 1.0 的编译时间减少了32% (注意: 不是运行速度).
当然, Go刚面世的时候, 编译速度是其中的一个设计目标.
不过我想楼主, 可能想说的是因为编译器自己添加分号而导致的编译错误的问题.
我觉得Go中 { 不能另起一行是语言特性, 如果修复这个就是引入了新的错误.
其他的我真想不起来还有哪些 调编译速度,不惜放弃本应提供的功能 (不要提泛型, 那是因为还没有好的设计).
1.4 错误处理机制太原始
在Go语言中处理错误的基本模式是:函数通常返回多个值,其中最后一个值是error类型 , 用于表示错误类型极其描述;调用者每次调用完一个函数 , 都需要检查这个error并进行相应的错误处理:if err != nil { /*这种代码写多了不想吐么*/ } 。此模式跟C语言那种很原始的错误处理相比如出一辙,并无实质性改进 。实际应用中很容易形成多层嵌套的if else语句,可以想一想这个编码场景:先判断文件是否存在,如果存在则打开文件,如果打开成功则读取文件,如果读取成功再写入一段数据 , 最后关闭文件,别忘了还要处理每一步骤中出现错误的情况,这代码写出来得有多变态、多丑陋?实践中普遍的做法是,判断操作出错后提前return , 以避免多层花括号嵌套,但这么做的后果是 , 许多错误处理代码被放在前面突出的位置,常规的处理逻辑反而被掩埋到后面去了,代码可读性极差 。而且,error对象的标准接口只能返回一个错误文本,有时候调用者为了区分不同的错误类型,甚至需要解析该文本 。除此之外,你只能手工强制转换error类型到特定子类型(静态类型的优势没了) 。至于panic - recover机制 , 致命的缺陷是不能跨越库的边界使用,注定是一个半成品 , 最多只能在自己的pkg里面玩一玩 。Java的异常处理虽然也有自身的问题(比如Checked Exceptions) , 但总体上还是比Go的错误处理高明很多 。
话说, 软件开发都发展了半个世纪, 还是无实质性改进. 不要以为弄一个异常的语法糖就是革命了.
我只能说错误和异常是2个不同的东西, 将所有错误当作异常那是SB行为.
正因为有异常这个所谓的银弹, 导致很多等着别人帮忙擦屁股的行为(注意 shit 函数抛出的绝对不会是一种类型的 shit, 而被其间接调用的各种 xxx_shit 也可能抛出各种类型的异常, 这就导致 catch 失控了):
int main() {
try {
shit();
} catch( /* 到底有几千种 shit ? */) {
...
}
}
Go的建议是 panic - recover 不跨越边界, 也就是要求正常的错误要由pkg的处理掉.
这是负责任的行为.
再说Go是面向并发的编程语言, 在海量的 goroutine 中使用 try/catch 是不是有一种不伦不类的感觉呢?
1.5 垃圾回收器(GC)不完善、有重大缺陷
在Go 1.0前夕,其垃圾回收器在32位环境下有内存泄漏,一直拖着不肯改进,这且不说 。Go语言垃圾回收器真正致命的缺陷是,会导致整个进程不可预知的间歇性停顿 。像某些大型后台服务程序,如游戏服务器、APP容器等 , 由于占用内存巨大,其内存对象数量极多,GC完成一次回收周期,可能需要数秒甚至更长时间,这段时间内,整个服务进程是阻塞的、停顿的,在外界看来就是服务中断、无响应,再牛逼的并发机制到了这里统统失效 。垃圾回收器定期启动,每次启动就导致短暂的服务中断,这样下去,还有人敢用吗?这可是后台服务器进程,是Go语言的重点应用领域 。以上现象可不是我假设出来的,而是事实存在的现实问题,受其严重困扰的也不是一家两家了(2013年底ECUG Con 2013 , 京东的刘奇提到了Go语言的GC、defer、标准库实现是性能杀手,最大的痛苦是GC;美团的沈锋也提到Go语言的GC导致后台服务间隔性停顿是最大的问题 。更早的网络游戏仙侠道开发团队也曾受Go垃圾回收的沉重打击) 。在实践中,你必须努力减少进程中的对象数量,以便把GC导致的间歇性停顿控制在可接受范围内 。除此之外你别无选择(难道你还想自己更换GC算法、甚至砍掉GC?那还是Go语言吗?) 。跳出圈外,我近期一直在思考,一定需要垃圾回收器吗?没有垃圾回收器就一定是历史的倒退吗?(可能会新写一篇博客文章专题探讨 。)
这是说的是32位系统, 这绝对不是Go语言的重点应用领域!! 我可以说Go出生就是面向64位系统和多核心CPU环境设计的. (再说 Rust 目前好像还不支持 XP 吧, 这可不可以算是影响巨大?)
32位当时是有问题, 但是对实际生产影响并不大(请问楼主还是在用32位系统吗, 还只安装4GB的内存吗). 如果是8位单片机环境, 建议就不要用Go语言了, 直接C语言好了.
而且这个问题早就不存在了(大家可以去看Go的发布日志).
Go的出生也就5年时间, GC的完善和改进是一个持续的工作, 2015年8月将发布的 Go1.5将采用并行GC.
关于GC的被人诟病的地方是会导致卡顿, 但是我以为这个主要是因为GC的实现还不够完美而导致的.
如果是完美的并发和增量的GC, 那应该不会出现大的卡顿问题的.
当然, 如果非要实时性, 那用C好了(实时并不表示性能高, 只是响应时间可控).
对于Rust之类没有GC的语言来说, 想很方便的开发并发的后台程序那几乎是不可能的.
不要总是吹Rust能代替底层/中层/上层的开发, 我们要看有谁用Rust真的做了什么.
1.6 禁止未使用变量和多余import
Go编译器不允许存在被未被使用的变量和多余的import,如果存在,必然导致编译错误 。但是现实情况是,在代码编写、重构、调试过程中,例如,临时性的注释掉一行代码 , 很容易就会导致同时出现未使用的变量和多余的import,直接编译错误了,你必须相应的把变量定义注释掉,再翻页回到文件首部把多余的import也注释掉,……等事情办完了,想把刚才注释的代码找回来,又要好几个麻烦的步骤 。还有一个让人蛋疼的问题,编写数据库相关的代码时,如果你import某数据库驱动的pkg,它编译给你报错,说不需要import这个未被使用的pkg;但如果你听信编译器的话删掉该import,编译是通过了,运行时必然报错,说找不到数据库驱动;你看看程序员被折腾的两边不是人,最后不得不请出大神:import _ 。对待这种问题,一个比较好的解决方案是,视其为编译警告而非编译错误 。但是Go语言开发者很固执,不容许这种折中方案 。
这个问题我只能说楼主的吐槽真的是没水平.
为何不使用的是错误而不是警告? 这是为了将低级的bug消灭在编译阶段(大家可以想下C/C的那么多警告有什么卵用).
而且, import 即使没有使用的话, 也是用副作用的, 因为 import 会导致 init 和全局变量的初始化.
如果某些代码没有使用, 为何要执行 init 这些初始化呢?
如果是因为调试而添加的变量, 那么调试完删除不是很正常的要求吗?
如果是因为调试而要导入fmt或log之类的包, 删除调试代码后又导致 import 错误的花,
楼主难道不知道在一个独立的文件包装下类似的辅助调试的函数吗?
import (
"fmt"
"log"
)
func logf(format string, a ...interface{}) {
file, line := callerFileLine()
fmt.Fprintf(os.Stderr, "%s:%d: ", file, line)
fmt.Fprintf(os.Stderr, format, a...)
}
func fatalf(format string, a ...interface{}) {
file, line := callerFileLine()
fmt.Fprintf(os.Stderr, "%s:%d: ", file, line)
fmt.Fprintf(os.Stderr, format, a...)
os.Exit(1)
}
import _ 是有明确行为的用法, 就是为了执行包中的 init 等函数(可以做某些注册操作).
将警告当作错误是Go的一个哲学, 当然在楼主看来这是白痴做法.
1.7 创建对象的方式太多令人纠结
创建对象的方式,调用new函数、调用make函数、调用New方法、使用花括号语法直接初始化结构体,你选哪一种?不好选择,因为没有一个固定的模式 。从实践中看 , 如果要创建一个语言内置类型(如channel、map)的对象,通常用make函数创建;如果要创建标准库或第三方库定义的类型的对象 , 首先要去文档里找一下有没有New方法,如果有就最好调用New方法创建对象 , 如果没有New方法 , 则退而求其次,用初始化结构体的方式创建其对象 。这个过程颇为周折,不像C、Java、C#那样直接new就行了 。
C的new是狗屎. new导致的问题是构造函数和普通函数的行为不一致, 这个补丁特性真的没啥优越的.
我还是喜欢C语言的 fopen 和 malloc 之类构造函数, 构造函数就是普通函数, Go语言中也是这样.
C中, 除了构造不兼容普通函数, 析构函数也是不兼容普通函数. 这个而引入的坑有很多吧.
1.8 对象没有构造函数和析构函数
没有构造函数还好说,毕竟还有自定义的New方法,大致也算是构造函数了 。没有析构函数就比较难受了,没法实现RAII 。额外的人工处理资源清理工作 , 无疑加重了程序员的心智负担 。没人性啊 , 还嫌我们程序员加班还少吗?C里有析构函数 , Java里虽然没有析构函数但是有人家finally语句啊,Go呢,什么都没有 。没错,你有个defer,可是那个defer问题更大,详见下文吧 。
defer 可以覆盖析构函数的行为, 当然 defer 还有其他的任务. Swift2.0 也引入了一个简化版的 defer 特性.
1.9 defer语句的语义设定不甚合理
Go语言设计defer语句的出发点是好的,把释放资源的“代码”放在靠近创建资源的地方 , 但把释放资源的“动作”推迟(defer)到函数返回前执行 。遗憾的是其执行时机的设置似乎有些不甚合理 。设想有一个需要长期运行的函数,其中有无限循环语句,在循环体内不断的创建资源(或分配内存),并用defer语句确保释放 。由于函数一直运行没有返回,所有defer语句都得不到执行 , 循环过程中创建的大量短暂性资源一直积累着,得不到回收 。而且,系统为了存储defer列表还要额外占用资源,也是持续增加的 。这样下去,过不了多久,整个系统就要因为资源耗尽而崩溃 。像这类长期运行的函数,http.ListenAndServe()就是典型的例子 。在Go语言重点应用领域,可以说几乎每一个后台服务程序都必然有这么一类函数,往往还都是程序的核心部分 。如果程序员不小心在这些函数中使用了defer语句,可以说后患无穷 。如果语言设计者把defer的语义设定为在所属代码块结束时(而非函数返回时)执行 , 是不是更好一点呢?可是Go 1.0早已发布定型 , 为了保持向后兼容性,已经不可能改变了 。小心使用defer语句!一不小心就中招 。
前面说到 defer 还有其他的任务, 也就是 defer 中执行的 recover 可以捕获 panic 抛出的异常.
还有 defer 可以在 return 之后修改命名的返回值.
上面2个工作要求 defer 只能在函数退出时来执行.
楼主说的 defer 是类似 Swift2.0 中 defer 的行为, 但是 Swift2.0 中 defer 是没有前面2个特性的.
Go中的defer是以函数作用域作为触发的条件的, 是会导致楼主说的在 for 中执行的错误用法(哪个语言没有坑呢?).
不过 for 中 局部 defer 也是有办法的 (Go中的defer是以函数作用域):
for {
func(){
f, err := os.Open(...)
defer f.Close()
}()
}
在 for 中做一个闭包函数就可以了. 自己不会用不要怪别人没告诉你.
1.10 许多语言内置设施不支持用户定义的类型
for in、make、range、channel、map等都仅支持语言内置类型,不支持用户定义的类型(?) 。用户定义的类型没法支持for in循环,用户不能编写像make、range那样“参数类型和个数”甚至“返回值类型和个数”都可变的函数,不能编写像channel、map那样类似泛型的数据类型 。语言内置的那些东西 , 处处充斥着斧凿的痕迹 。这体现了语言设计的局限性、封闭性、不完善,可扩展性差,像是新手作品——且不论其设计者和实现者如何权威 。延伸阅读:Go语言是30年前的陈旧设计思想,用户定义的东西几乎都是二等公民(Tikhon Jelvis) 。
说到底, 这个是因为对泛型支持的不完备导致的.
Go语言是没啥NB的特性, 但是Go的特性和工具组合在一起就是好用.
这就是Go语言NB的地方.
1.11 没有泛型支持 , 常见数据类型接口丑陋
没有泛型的话,List、Set、Tree这些常见的基础性数据类型的接口就只能很丑陋:放进去的对象是一个具体的类型,取出来之后成了无类型的interface{}(可以视为所有类型的基础类型) , 还得强制类型转换之后才能继续使用,令人无语 。Go语言缺少min、max这类函数,求数值绝对值的函数abs只接收/返回双精度小数类型,排序接口只能借助sort.Interface无奈的回避了被比较对象的类型,等等等等 , 都是没有泛型导致的结果 。没有泛型,接口很难优雅起来 。Go开发者没有明确拒绝泛型 , 只是说还没有找到很好的方法实现泛型(能不能学学已经开源的语言呀) 。现实是 , Go 1.0已经定型 , 泛型还没有 , 那些丑陋的接口为了保持向后兼容必须长期存在着 。
Go有自己的哲学, 如果能有和目前哲学不冲突的泛型实现, 他们是不会反对的.
如果只是简单学学(或者叫抄袭)已经开源的语言的语法, 那是C的设计风格(或者说C从来都是这样设计的, 有什么特性就抄什么), 导致了各种脑裂的编程风格.
编译时泛型和运行时泛型可能是无法完全兼容的, 看这个例子:
type AdderT interface {
Add(a, b T) T
}
【golang】内存逃逸常见情况和避免方式因为如果变量的内存发生逃逸go语言内存问题,它的生命周期就是不可知的go语言内存问题,其会被分配到堆上,而堆上分配内存不能像栈一样会自动释放,为了解放程序员双手,专注于业务的实现,go实现了gc垃圾回收机制,但gc会影响程序运行性能,所以要尽量减少程序的gc操作 。
1、在方法内把局部变量指针返回,被外部引用 , 其生命周期大于栈,则溢出 。
2、发送指针或带有指针的值到channel,因为编译时候无法知道那个goroutine会在channel接受数据,编译器无法知道什么时候释放 。
3、在一个切片上存储指针或带指针的值 。比如[]*string,导致切片内容逃逸,其引用值一直在堆上 。
4、因为切片的append导致超出容量,切片重新分配地址,切片背后的存储基于运行时的数据进行扩充 , 就会在堆上分配 。
5、在interface类型上调用方法,在Interface调用方法是动态调度的 , 只有在运行时才知道 。
1、go语言的接口类型方法调用是动态,因此不能在编译阶段确定,所有类型结构转换成接口的过程会涉及到内存逃逸发生,在频次访问较高的函数尽量调用接口 。
2、不要盲目使用变量指针作为参数 , 虽然减少了复制 , 但变量逃逸的开销更大 。
3、预先设定好slice长度,避免频繁超出容量,重新分配 。
内存对齐问题1.平台原因(移植原因): 不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能
在某些地址处取某些特定类型的数据,否则抛出硬件异常 。
2.性能原因: 数据结构应该尽可能地在自然边界上对齐 。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问 。(如果是对齐的 , 那么CPU不需要跨越两个操作字 , 不是对齐的则需要访问两个操作字才能拼接出需要的内存地址)
指针的大小一般是一个机器字的大小
通过Go语言的structlayout工具,可以得出下图
这些类型在之前的 slice 、 map 、 interface 已经介绍过了,也特意强调过,makehmap函数返回的是一个指针 , 因此map的对齐为一个机器字.
回头看看 sync.pool的防止copy的空结构体字段,也是放在第一位,破案了 。
计算机结构可能会要求内存地址 进行对齐;也就是说,一个变量的地址是一个因子的倍数,也就是该变量的类型是对齐值 。
函数Alignof接受一个表示任何类型变量的表达式作为参数,并以字节为单位返回变量(类型)的对齐值 。对于变量x:
这是因为int64在bool之后未对齐 。
它是32位对齐的,但不是64位对齐的 , 因为我们使用的是32位系统 , 因此实际上只是两个32位值并排在一起 。
● 内存对齐是为了cpu更高效访问内存中数据
● 结构体对齐依赖类型的大小保证和对齐保证
● 地址对齐保证是:如果类型 t 的对齐保证是 n,那么类型 t 的每个值的地址在运行时必须是 n 的倍数 。
● struct内字段如果填充过多,可以尝试重排,使字段排列更紧密,减少内存浪费
● 零大小字段要避免作为struct最后一个字段,会有内存浪费
● 32位系统上对64位字的原子访问要保证其是8bytes对齐的;当然如果不必要的 话,还是用加锁(mutex)的方式更清晰简单
图解go-内存对齐
doc-pdf
go语言的出现非常奇怪,有几个问题请高手答案一下~~~~??1:go与c语言相比,go有垃圾回收,不会造成内存泄露问题,go的语法简洁优美 , 同样的c100行代码go大概50行可以做到,go的目标是能做C能做的事,虽然目前可能不太实际
2:go的并行机制并不是一般的线程,通过channel和goroutine来实现,比线程还要轻量级很多,所以go适合高并发的服务器端
3:go是系统级别的语言,相当于c语言,java c#都是算比较高级的语言,这个不太好比,效率的话目前确实是要高一些,而且不需要外部依赖,所以go还是很强大的
Go语言中恰到好处的内存对齐 在开始之前,希望你计算一下Part1共占用的大小是多少呢?
输出结果:
这么一算,Part1这一个结构体的占用内存大小为 1 4 1 8 1 = 15 个字节 。相信有的小伙伴是这么算的,看上去也没什么毛病
真实情况是怎么样的呢?我们实际调用看看 , 如下:
输出结果:
最终输出为占用 32 个字节 。这与前面所预期的结果完全不一样 。这充分地说明了先前的计算方式是错误的 。为什么呢?
在这里要提到 “内存对齐” 这一概念,才能够用正确的姿势去计算,接下来我们详细的讲讲它是什么
有的小伙伴可能会认为内存读取 , 就是一个简单的字节数组摆放
上图表示一个坑一个萝卜的内存读取方式 。但实际上 CPU 并不会以一个一个字节去读取和写入内存 。相反 CPU 读取内存是 一块一块读取 的,块的大小可以为 2、4、6、8、16 字节等大小 。块大小我们称其为 内存访问粒度。如下图:
在样例中,假设访问粒度为 4 。CPU 是以每 4 个字节大小的访问粒度去读取和写入内存的 。这才是正确的姿势
另外作为一个工程师,你也很有必要学习这块知识点哦 :)
在上图中,假设从 Index 1 开始读取,将会出现很崩溃的问题 。因为它的内存访问边界是不对齐的 。因此 CPU 会做一些额外的处理工作 。如下:
从上述流程可得出,不做 “内存对齐” 是一件有点 "麻烦" 的事 。因为它会增加许多耗费时间的动作
而假设做了内存对齐,从 Index 0 开始读取 4 个字节,只需要读取一次,也不需要额外的运算 。这显然高效很多,是标准的 空间换时间 做法
在不同平台上的编译器都有自己默认的 “对齐系数”,可通过预编译命令#pragma pack(n)进行变更,n 就是代指 “对齐系数” 。一般来讲,我们常用的平台的系数如下:
另外要注意,不同硬件平台占用的大小和对齐值都可能是不一样的 。因此本文的值不是唯一的,调试的时候需按本机的实际情况考虑
输出结果:
在 Go 中可以调用unsafe.Alignof来返回相应类型的对齐系数 。通过观察输出结果,可得知基本都是2^n,最大也不会超过 8 。这是因为我手提(64 位)编译器默认对齐系数是 8,因此最大值不会超过这个数
在上小节中 , 提到了结构体中的成员变量要做字节对齐 。那么想当然身为最终结果的结构体,也是需要做字节对齐的
接下来我们一起分析一下 , “它” 到底经历了些什么,影响了 “预期” 结果
在每个成员变量进行对齐后,根据规则 2,整个结构体本身也要进行字节对齐,因为可发现它可能并不是2^n ,不是偶数倍 。显然不符合对齐的规则
根据规则 2,可得出对齐值为 8 。现在的偏移量为 25,不是 8 的整倍数 。因此确定偏移量为 32 。对结构体进行对齐
Part1 内存布局:axxx|bbbb|cxxx|xxxx|dddd|dddd|exxx|xxxx
通过本节的分析,可得知先前的 “推算” 为什么错误?
是因为实际内存管理并非 “一个萝卜一个坑” 的思想 。而是一块一块 。通过空间换时间(效率)的思想来完成这块读取、写入 。另外也需要兼顾不同平台的内存操作情况
在上一小节,可得知根据成员变量的类型不同,其结构体的内存会产生对齐等动作 。那假设字段顺序不同,会不会有什么变化呢?我们一起来试试吧 :-)
输出结果:
通过结果可以惊喜的发现,只是 “简单” 对成员变量的字段顺序进行改变,就改变了结构体占用大小
接下来我们一起剖析一下Part2,看看它的内部到底和上一位之间有什么区别,才导致了这样的结果?
符合规则 2,不需要额外对齐
Part2 内存布局:ecax|bbbb|dddd|dddd
通过对比Part1和Part2的内存布局,你会发现两者有很大的不同 。如下:
仔细一看, Part1存在许多 Padding 。显然它占据了不少空间,那么 Padding 是怎么出现的呢?
通过本文的介绍,可得知是由于不同类型导致需要进行字节对齐 , 以此保证内存的访问边界
那么也不难理解,为什么 调整结构体内成员变量的字段顺序 就能达到缩小结构体占用大小的疑问了,是因为巧妙地减少了 Padding 的存在 。让它们更 “紧凑” 了 。这一点对于加深 Go 的内存布局印象和大对象的优化非常有帮
为什么 Go 语言的性能还不如javaGo语言自亮相以来并没有展示一个明确的方向,Google员工将Go语言称为一个“试验性语言”,称其试图融合Python等动态语言的开发速度和C或C等编译语言的性能和安全 。一位Go语言的支持者概括而言Go语言如下:简单、快速、安全、并发、快乐编程、开源;但Go语言缺乏方向以及其“集大成者”的尝试很容易会导致其学猫不成学狗也不成 , 沦为四不像 。尽管如此,编者仍然觉得Go语言有相当大的潜力:很多开发者对它感兴趣——不仅它的最初设计者阵容强大,而且在参与修改源代码的人群中也不乏大牛级人物 。这很有可能帮助Go语言找到适合自己的方向 , 开拓系统编程的新方向 。
关于go语言内存问题和go语言内存不断升高的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站 。
推荐阅读
- 虎牙直播领取香肠派对积分,虎牙积分怎么获得
- cpu后t什么,cpu t后缀
- 爬虫ip变换,爬虫ip切换
- 模拟视频通话的小程序的简单介绍
- linux常命令 linux命令cd
- 手机怎么设置电子作业,手机电子组件怎么设置
- mysql查询用户是否存在,mysql判断用户是否存在
- 斗鱼直播直播加载失败,为什么斗鱼直播加载失败
- Linux命令及其使用 linux命令及其作用