go语言分析 go语言分析tcpip协议

go语言语法(基础语法篇)import "workname/packetfolder"
导入多个包
方法调用 包名.函数//不是函数或结构体所处文件或文件夹名
packagename.Func()
前面加个点表示省略调用,那么调用该模块里面的函数,可以不用写模块名称了:
当导入一个包时 , 该包下的文件里所有init()函数都会被执行,然而,有些时候我们并不需要把整个包都导入进来 , 仅仅是是希望它执行init()函数而已 。下划线的作用仅仅是为了调用init()函数,所以无法通过包名来调用包中的其他函数
import _ package
变量声明必须要使用否则会报错 。
全局变量运行声明但不使用 。
func 函数名 (参数1,参数2,...) (返回值a 类型a, 返回值b 类型b,...)
func 函数名 (参数1,参数2,...) (返回值类型1, 返回值类型2,...)
func (this *结构体名) 函数名(参数 string) (返回值类型1, 返回值类型2){}
使用大小来区分函数可见性
大写是public类型
小写是private类型
func prifunc int{}
func pubfunc int{}
声明静态变量
const value int
定义变量
var value int
声明一般类型、接口和结构体
声明函数
func function () int{}
go里面所有的空值对应如下
通道类型
内建函数 new 用来分配内存,它的第一个参数是一个类型 , 不是一个值,它的返回值是一个指向新分配类型零值的指针
func new(Type) *Type
[这位博主有非常详细的分析]
【go语言分析 go语言分析tcpip协议】 Go 语言支持并发,我们只需要通过 go 关键字来开启 goroutine 即可 。
goroutine 是轻量级线程,goroutine 的调度是由 Golang 运行时进行管理的 。
同一个程序中的所有 goroutine 共享同一个地址空间 。
语法格式如下:
通道(channel)是用来传递数据的一个数据结构 。
通道的声明
通道可用于两个 goroutine 之间通过传递一个指定类型的值来同步运行和通讯 。操作符 - 用于指定通道的方向 , 发送或接收 。如果未指定方向,则为双向通道 。
[这里有比较详细的用例]
go里面的空接口可以指代任何类型(无论是变量还是函数)
声明空接口
go里面的的强制类型转换语法为:
int(data)
如果是接口类型的强制转成其他类型的语法为:
go里面的强制转换是将值复制过去,所以在数据量的时候有比较高的运行代价
Go语言有什么优势?GO语言的优势:可直接编译成机器码,不依赖其他库,glibc的版本有一定要求,部署就是扔一个文件上去就完成了 。静态类型语言,但是有动态语言的感觉 , 静态类型的语言就是可以在编译的时候检查出来隐藏的大多数问题,动态语言的感觉就是有很多的包可以使用,写起来的效率很高 。语言层面支持并发,这个就是Go最大的特色,天生的支持并发,我曾经说过一句话,天生的基因和整容是有区别的,大家一样美丽,但是你喜欢整容的还是天生基因的美丽呢?Go就是基因里面支持的并发,可以充分的利用多核,很容易的使用并发 。内置runtime,支持垃圾回收,这属于动态语言的特性之一吧,虽然目前来说GC不算完美 , 但是足以应付我们所能遇到的大多数情况,特别是Go1.1之后的GC 。简单易学,Go语言的作者都有C的基因,那么Go自然而然就有了C的基因,那么Go关键字是25个 , 但是表达能力很强大 , 几乎支持大多数你在其他语言见过的特性:继承、重载、对象等 。丰富的标准库 , Go目前已经内置了大量的库,特别是网络库非常强大 , 我最爱的也是这部分 。内置强大的工具 , Go语言里面内置了很多工具链 , 最好的应该是gofmt工具 , 自动化格式化代码,能够让团队review变得如此的简单,代码格式一模一样,想不一样都很困难 。跨平台编译,如果你写的Go代码不包含cgo,那么就可以做到window系统编译linux的应用,如何做到的呢?Go引用了plan9的代码,这就是不依赖系统的信息 。Go语言这么多的优势 , 你还不想学吗?我记得当时我看的是黑马程序员的视频,我对他们视频的印象就是通俗易懂,就是好!
Go 语言内存管理(三):逃逸分析Go 语言较之 C 语言一个很大的优势就是自带 GC 功能,可 GC 并不是没有代价的 。写 C 语言的时候,在一个函数内声明的变量,在函数退出后会自动释放掉,因为这些变量分配在栈上 。如果你期望变量的数据可以在函数退出后仍然能被访问,就需要调用malloc方法在堆上申请内存,如果程序不再需要这块内存了,再调用free方法释放掉 。Go 语言不需要你主动调用malloc来分配堆空间,编译器会自动分析 , 找出需要malloc的变量 , 使用堆内存 。编译器的这个分析过程就叫做逃逸分析 。
所以你在一个函数中通过dict := make(map[string]int)创建一个 map 变量 , 其背后的数据是放在栈空间上还是堆空间上,是不一定的 。这要看编译器分析的结果 。
可逃逸分析并不是百分百准确的,它有缺陷 。有的时候你会发现有些变量其实在栈空间上分配完全没问题的,但编译后程序还是把这些数据放在了堆上 。如果你了解 Go 语言编译器逃逸分析的机制,在写代码的时候就可以有意识地绕开这些缺陷,使你的程序更高效 。
Go 语言虽然在内存管理方面降低了编程门槛,即使你不了解堆栈也能正常开发,但如果你要在性能上较真的话,还是要掌握这些基础知识 。
这里不对堆内存和栈内存的区别做太多阐述 。简单来说就是 , 栈分配廉价,堆分配昂贵 。栈空间会随着一个函数的结束自动释放,堆空间需要时间 GC 模块不断地跟踪扫描回收 。如果对这两个概念有些迷糊,建议阅读下面 2 个文章:
这里举一个小例子,来对比下堆栈的差别:
stack函数中的变量i在函数退出会自动释放;而heap函数返回的是对变量i的引用 , 也就是说heap()退出后,表示变量i还要能被访问,它会自动被分配到堆空间上 。
他们编译出来的代码如下:
逻辑的复杂度不言而喻,从上面的汇编中可看到,heap()函数调用了runtime.newobject()方法,它会调用mallocgc方法从mcache上申请内存 , 申请的内部逻辑前面文章已经讲述过 。堆内存分配不仅分配上逻辑比栈空间分配复杂 , 它最致命的是会带来很大的管理成本 , Go 语言要消耗很多的计算资源对其进行标记回收(也就是 GC 成本) 。
Go 编辑器会自动帮我们找出需要进行动态分配的变量,它是在编译时追踪一个变量的生命周期,如果能确认一个数据只在函数空间内访问,不会被外部使用,则使用栈空间,否则就要使用堆空间 。
我们在go build编译代码时,可使用-gcflags '-m'参数来查看逃逸分析日志 。
以上面的两个函数为例,编译的日志输出是:
日志中的i escapes to heap表示该变量数据逃逸到了堆上 。
需要使用堆空间,所以逃逸,这没什么可争议的 。但编译器有时会将不需要使用堆空间的变量,也逃逸掉 。这里是容易出现性能问题的大坑 。网上有很多相关文章,列举了一些导致逃逸情况 , 其实总结起来就一句话:
多级间接赋值容易导致逃逸。
这里的多级间接指的是,对某个引用类对象中的引用类成员进行赋值 。Go 语言中的引用类数据类型有func,interface,slice,map,chan,*Type(指针)。
记住公式Data.Field = Value,如果Data,Field都是引用类的数据类型,则会导致Value逃逸 。这里的等号=不单单只赋值,也表示参数传递 。
根据公式,我们假设一个变量data是以下几种类型 , 相应的可以得出结论:
下面给出一些实际的例子:
如果变量值是一个函数,函数的参数又是引用类型,则传递给它的参数都会逃逸 。
上例中te的类型是func(*int),属于引用类型,参数*int也是引用类型,则调用te(j)形成了为te的参数(成员)*int赋值的现象 , 即te.i = j会导致逃逸 。代码中其他几种调用都没有形成 多级间接赋值 情况 。
同理,如果函数的参数类型是slice,map或interface{}都会导致参数逃逸 。
匿名函数的调用也是一样的,它本质上也是一个函数变量 。有兴趣的可以自己测试一下 。
只要使用了Interface类型(不是interafce{}),那么赋值给它的变量一定会逃逸 。因为interfaceVariable.Method()先是间接的定位到它的实际值,再调用实际值的同名方法,执行时实际值作为参数传递给方法 。相当于interfaceVariable.Method.this = realValue
向 channel 中发送数据,本质上就是为 channel 内部的成员赋值,就像给一个 slice 中的某一项赋值一样 。所以chan *Type,chan map[Type]Type,chan []Type,chan interface{}类型都会导致发送到 channel 中的数据逃逸 。
这本来也是情理之中的,发送给 channel 的数据是要与其他函数分享的 , 为了保证发送过去的指针依然可用,只能使用堆分配 。
可变参数如func(arg ...string)实际与func(arg []string)是一样的,会增加一层访问路径 。这也是fmt.Sprintf总是会使参数逃逸的原因 。
例子非常多,这里不能一一列举,我们只需要记住分析方法就好,即 , 2 级或更多级的访问赋值会容易导致数据逃逸 。这里加上容易二字是因为随着语言的发展,相信这些问题会被慢慢解决,但现阶段,这个可以作为我们分析逃逸现象的依据 。
下面代码中包含 2 种很常规的写法,但他们却有着很大的性能差距,建议自己想下为什么 。
Benchmark 和 pprof 给出的结果:
熟悉堆栈概念可以让我们更容易看透 Go 程序的性能问题,并进行优化 。
多级间接赋值会导致 Go 编译器出现不必要的逃逸,在一些情况下可能我们只需要修改一下数据结构就会使性能有大幅提升 。这也是很多人不推荐在 Go 中使用指针的原因,因为它会增加一级访问路径,而map,slice,interface{}等类型是不可避免要用到的,为了减少不必要的逃逸 , 只能拿指针开刀了 。
大多数情况下,性能优化都会为程序带来一定的复杂度 。建议实际项目中还是怎么方便怎么写,功能完成后通过性能分析找到瓶颈所在,再对局部进行优化 。
go分析要多久Go语言的分析取决于多方面的因素 , 如代码量、理解深度、复杂性等 。如果是一般的小规模项目,比如几百行代码,那么通常需要几个小时来分析 。但对于大规模项目,比如几万行以上,则需要更多的时间来分析,可能会有几天或更长的时间 。同时,如果开发者对代码深入理解的程度越高,分析的时间也会更长 。
关于go语言分析和go语言分析tcpip协议的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息 , 记得收藏关注本站 。

    推荐阅读