欠伸展肢体,吟咏心自愉。这篇文章主要讲述poj-2486-Apple Tree相关的知识,希望能为你提供帮助。
poj-2486-Apple Tree
Apple Tree
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 11210 | Accepted: 3774 |
Wshxzt is a lovely girl. She likes apple very much. One day HX takes her to an apple tree. There are N nodes in the tree. Each node has an amount of apples. Wshxzt starts her happy trip at one node. She can eat up all the apples in the nodes she reaches. HX is a kind guy. He knows that eating too many can make the lovely girl become fat. So he doesn’t allow Wshxzt to go more than K steps in the tree. It costs one step when she goes from one node to another adjacent node. Wshxzt likes apple very much. So she wants to eat as many as she can. Can you tell how many apples she can eat in at most K steps.Input
There are several test cases in the input
Each test case contains three parts.
The first part is two numbers N K, whose meanings we have talked about just now. We denote the nodes by 1 2 ... N. Since it is a tree, each node can reach any other in only one route. (1< =N< =100, 0< =K< =200)
The second part contains N integers (All integers are nonnegative and not bigger than 1000). The ith number is the amount of apples in Node i.
The third part contains N-1 line. There are two numbers A,B in each line, meaning that Node A and Node B are adjacent.
Input will be ended by the end of file.
Note: Wshxzt starts at Node 1.Output
For each test case, output the maximal numbers of apples Wshxzt can eat at a line.Sample Input
2 1 0 11 1 2 3 2 0 1 2 1 2 1 3
Sample Output
11 2
Source
POJ Contest,Author:[email protected]
17857578 | 2486 | Accepted | 892K | 63MS | G++ | 1191B | 2017-11-18 19:26:17 |
树状DP。
本题的关键在于建立dp转化方程。
dp[x][j][0] = max( dp[x][j][0], dp[x][j-t][1] + dp[y][t-1][0] );
表示的是不回到当前x点的话,是回到j - t 步的x当前点 加上 不回到 y 点的步骤
dp[x][j][0] = max(dp[x][j][0], dp[x][j-t][0] + dp[y][t-2][1] );
表示的 不回到当前x点。 是 不回到当前 x 点 和 回到y点的 之和。
【poj-2486-Apple Tree】
dp[x][j][1] = max(dp[x][j][1], dp[x][j-t][1] + dp[y][t-2][1] );
表示回到当前x点, 是回到x点和回到子结点y的总和。
// poj-2486#include < cstdio> #include < cstring> #include < iostream> #include < vector> using namespace std; const int MAXN = 100 + 10; int n, k, val[MAXN], vis[MAXN], dp[MAXN][2*MAXN][2]; vector< int> vt[MAXN]; void dfs(int x){ vis[ x ] = 1; for(int i=0; i< vt[x].size(); ++i){ int y = vt[x][i]; if(vis[ y ] == 1){ continue; } dfs(y); for(int j=k; j> =1; --j){ for(int t=1; t< =j; ++t){ dp[x][j][0] = max( dp[x][j][0], dp[x][j-t][1] + dp[y][t-1][0] ); if(t > = 2){ dp[x][j][0] = max(dp[x][j][0], dp[x][j-t][0] + dp[y][t-2][1] ); dp[x][j][1] = max(dp[x][j][1], dp[x][j-t][1] + dp[y][t-2][1] ); } } } } }int main(){ freopen("in.txt", "r", stdin); int a, b, ans; while(scanf("%d %d", & n, & k) != EOF){ memset(dp, 0, sizeof(dp)); memset(vis, 0, sizeof(vis)); for(int i=1; i< =n; ++i){ scanf("%d", & val[i]); for(int j=0; j< =k; ++j){ dp[i][j][0] = dp[i][j][1] = val[i]; } }for(int i=1; i< =n; ++i){ vt[i].clear(); }for(int i=1; i< n; ++i){ scanf("%d %d", & a, & b); vt[a].push_back(b); vt[b].push_back(a); } dfs(1); ans = max(dp[1][k][0], dp[1][k][1]); printf("%d\n", ans ); } return 0; }
推荐阅读
- 支付宝APP支付里设置应用网关和授权回调地址是不必填的
- android 新控件 AppBarLayout 使用
- Android点击EditText文本框之外任何地方隐藏键盘的解决办法
- 在Android Studio 的External Tools添加javap命令
- The android command is deprecated
- Android adb设置
- DOM——创建节点及节点属性与内部插入append()和appendTo()
- APICloud的APP定制服务为什么与众不同?
- 车智汇系统车智会模式公众号与App的扩展开发