R语言时间序列TAR阈值自回归模型

原文链接:http://tecdat.cn/?p=5231 原文出处:拓端数据部落公众号 为了方便起见,这些模型通常简称为TAR模型。这些模型捕获了线性时间序列模型无法捕获的行为,例如周期,幅度相关的频率和跳跃现象。Tong和Lim(1980)使用阈值模型表明,该模型能够发现黑子数据出现的不对称周期性行为。
一阶TAR模型的示例:
R语言时间序列TAR阈值自回归模型
文章图片

【R语言时间序列TAR阈值自回归模型】σ是噪声标准偏差,Yt-1是阈值变量,r是阈值参数, {et}是具有零均值和单位方差的iid随机变量序列。
每个线性子模型都称为一个机制。上面是两个机制的模型。
考虑以下简单的一阶TAR模型:
R语言时间序列TAR阈值自回归模型
文章图片

#低机制参数i1 = 0.3 p1 = 0.5 s1 = 1#高机制参数i2 = -0.2 p2 = -1.8 s2 = 1thresh = -1 delay = 1#模拟数据 y=sim(n=100,Phi1=c(i1,p1),Phi2=c(i2,p2),p=1,d=delay,sigma1=s1,thd=thresh,sigma2=s2)$y#绘制数据plot(y=y,x=1:length(y),type='o',xlab='t',ylab=expression(Y\[t\]) abline(thresh,0,col="red")

R语言时间序列TAR阈值自回归模型
文章图片

TAR模型_框架_是原始TAR模型的修改版本。它是通过抑制噪声项和截距并将阈值设置为0来获得的:
R语言时间序列TAR阈值自回归模型
文章图片

_框架_的稳定性以及某些规律性条件意味着TAR的平稳性。稳定性可以理解为,对于任何初始值Y1,_框架_都是有界过程。
在[164]中:
#使用不同的起点检查稳定性 startvals = c(-2, -1.1,-0.5, 0.8, 1.2, 3.4)count = 1 for (s in startvals) { ysk\[1 } else { ysk\[i\] = -1.8*ysk\[i-1\] }count = count + 1 }#绘制不同实现 matplot(t(x),type="l" abline(0,0)

R语言时间序列TAR阈值自回归模型
文章图片

Chan和Tong(1985)证明,如果满足以下条件,则一阶TAR模型是平稳的
R语言时间序列TAR阈值自回归模型
文章图片

一般的两机制模型写为:
R语言时间序列TAR阈值自回归模型
文章图片

在这种情况下,稳定性更加复杂。然而,Chan and Tong(1985)证明,如果
R语言时间序列TAR阈值自回归模型
文章图片

模型估计
一种方法以及此处讨论的方法是条件最小二乘(CLS)方法。
为简单起见,除了假设p1 = p2 = p,1≤d≤p,还假设σ1=σ2=σ。然后可以将TAR模型方便地写为
R语言时间序列TAR阈值自回归模型
文章图片

如果Yt-d> r,则I(Yt-d> r)= 1,否则为0。CLS最小化条件残差平方和:
R语言时间序列TAR阈值自回归模型
文章图片

在这种情况下,可以根据是否Yt-d≤r将数据分为两部分,然后执行OLS估计每个线性子模型的参数。
如果r未知。
在r值范围内进行搜索,该值必须在时间序列的最小值和最大值之间,以确保该序列实际上超过阈值。然后从搜索中排除最高和最低10%的值
  1. 在此受限频带内,针对不同的r = yt值估算TAR模型。
  2. 选择r的值,使对应的回归模型的残差平方和最小。
#找到分位数 lq = quantile(y,0.10) uq = quantile(y,0.90)#绘制数据 plot(y=y,x=1:length(y),type='o',xlab='t'abline(lq,0,col="blue") abline(uq,0,col="blue")

R语言时间序列TAR阈值自回归模型
文章图片

#模型估计数sum( (lq <= y ) & (y <= uq) )

80
如果d未知。
令d取值为1,2,3,...,p。为每个d的潜在值估算TAR模型,然后选择残差平方和最小的模型。
Chan(1993)已证明,CLS方法是一致的。
最小AIC(MAIC)方法
由于在实践中这两种情况的AR阶数是未知的,因此需要一种允许对它们进行估计的方法。对于TAR模型,对于固定的r和d,AIC变为
R语言时间序列TAR阈值自回归模型
文章图片

然后,通过最小化AIC对象来估计参数,以便在某个时间间隔内搜索阈值参数,以使任何方案都有足够的数据进行估计。
#估算模型 #如果知道阈值#如果阈值尚不清楚#MAIC 方法for (d in 1:3) { if (model.tar.s$AIC < AIC.best) { AIC.best = model.tar.s$AIC model.best$d = d model.best$p1 = model.tar.s ar.s$AIC, signif(model.tar.s$thd,4)AICM

R语言时间序列TAR阈值自回归模型
文章图片

非线性测试
1.使用滞后回归图进行目测。
绘制Yt与其滞后。拟合的回归曲线不是很直,可能表明存在非线性关系。
在[168]中:
lagplot(y)

R语言时间序列TAR阈值自回归模型
文章图片

2.Keenan检验:
考虑以下由二阶Volterra展开引起的模型:
R语言时间序列TAR阈值自回归模型
文章图片

其中{?t} 的iid正态分布为零均值和有限方差。如果η=0,则该模型成为AR(mm)模型。
可以证明,_Keenan_检验等同于回归模型中检验η=0:
R语言时间序列TAR阈值自回归模型
文章图片

其中Yt ^ 是从Yt-1,...,Yt-m上的Yt回归得到的拟合值。
3. Tsay检验:
_Keenan_测试的一种更通用的替代方法。用更复杂的表达式替换为Keenan检验给出的上述模型中的项η(∑mj = 1?jYt-j)2。最后对所有非线性项是否均为零的二次回归模型执行F检验。
在[169]中:
#检查非线性: Keenan, Tsay #Null is an AR model of order 1 Keenan.test(y,1)

$test.stat90.2589565661567$p.value1.76111433596097e-15$order1

在[170]中:
Tsay.test(y,1)

$test.stat71.34$p.value3.201e-13$order1

4.检验阈值非线性
这是基于似然比的测试。
零假设是AR(pp)模型;另一种假设是具有恒定噪声方差的p阶的两区域TAR模型,即σ1=σ2=σ。使用这些假设,可以将通用模型重写为
R语言时间序列TAR阈值自回归模型
文章图片

零假设表明?2,0 = ?2,1 = ... = ?2,p = 0。
似然比检验统计量可以证明等于
R语言时间序列TAR阈值自回归模型
文章图片

其中n-p是有效样本大小,σ^ 2(H0)是线性AR(p)拟合的噪声方差的MLE,而σ^ 2(H1)来自TAR的噪声方差与在某个有限间隔内搜索到的阈值的MLE。
H0下似然比检验的采样分布具有非标准采样分布;参见Chan(1991)和Tong(1990)。
在[171]中:
res = tlrt(y, p=1, d=1, a=0.15, b=0.85) res

$percentiles14.185.9 $test.statistic: 142.291963130459$p.value: 0

模型诊断
使用残差分析完成模型诊断。TAR模型的残差定义为
R语言时间序列TAR阈值自回归模型
文章图片

标准化残差是通过适当的标准偏差标准化的原始残差:
R语言时间序列TAR阈值自回归模型
文章图片

如果TAR模型是真正的数据机制,则标准化残差图应看起来是随机的。可以通过检查标准化残差的样本ACF来检查标准化误差的独立性假设。
#模型诊断diag(model.tar.best, gof.lag=20)

R语言时间序列TAR阈值自回归模型
文章图片

预测
预测分布通常是非正态的。通常,采用模拟方法进行预测。考虑模型
R语言时间序列TAR阈值自回归模型
文章图片

然后给定Yt = yt,Yt-1 = yt-1,...
R语言时间序列TAR阈值自回归模型
文章图片

因此,可以通过从误差分布中绘制et + 1并计算h(yt,et + 1),来获得单步预测分布的Yt + 1的实现。 。
通过独立重复此过程 B 次,您可以 从向前一步预测分布中随机获得B值样本 。
可以通过这些B 值的样本平均值来估计提前一步的预测平均值 。
通过迭代,可以轻松地将仿真方法扩展为找到任何l步提前预测分布:
R语言时间序列TAR阈值自回归模型
文章图片

其中Yt = yt和et + 1,et + 2,...,et + l是从误差分布得出的ll值的随机样本。
在[173]中:
#预测 model.tar.pred r.best, n.ahead = 10, n.sim=1000) y.pred = ts(c lines(ts(model.tar.pred$pred.interval\[2,\], start=end(y) + c(0,1), freq=1), lty=2) lines(ts(model

R语言时间序列TAR阈值自回归模型
文章图片

样例
这里模拟的时间序列是1700年至1988年太阳黑子的年数量。
在[174]中:
#数据集 #太阳黑子序列,每年plot.ts(sunsp

R语言时间序列TAR阈值自回归模型
文章图片

#通过滞后回归图检查非线性 lagplot(sunspo)

R语言时间序列TAR阈值自回归模型
文章图片

#使用假设检验检查线性 Keenan.test(sunspot.year) Tsay.test(sunspot.year)

$test.stat18.2840758932705$p.value2.64565849317573e-05$order9$test.stat3.904$p.value6.689e-12$order9

在[177]中:
#使用MAIC方法 AIC{ sunspot.tar.s = tar(sunspot.year, p1 = 9, p2 = 9, d = d, a=0.15, b=0.85)AICM

R语言时间序列TAR阈值自回归模型
文章图片

在[178]中:
#测试阈值非线性 tl(sunspot.year, p=9, d=9, a=0.15, b=0.85)

$percentiles1585 $test.statistic: 52.2571950943405$p.value: 6.8337179274236e-06

#模型诊断 tsdiag(sunspot.tar.best)

R语言时间序列TAR阈值自回归模型
文章图片

#预测 sunspot.tar.pred <- predict(sunspot.tar.best, n.ahead = 10, n.sim=1000)lines(ts(sunspot.tar.pred$pretart=e

R语言时间序列TAR阈值自回归模型
文章图片

#拟合线性AR模型 #pacf(sunspot.year) #尝试AR阶数9 ord = 9 ar.mod <- arima(sunspot.year, order=c(ord,0,0), method="CSS-ML")plot.ts(sunspot.year\[10:289\]

R语言时间序列TAR阈值自回归模型
文章图片

模拟TAR模型上的AR性能
_示例1._ 将AR(4)拟合到TAR模型
R语言时间序列TAR阈值自回归模型
文章图片

set.seed(12349) #低机制参数 i1 = 0.3 p1 = 0.5 s1 = 1#高机制参数 i2 = -0.2 p2 = -1.8 s2 = 1thresh = -1 delay = 1nobs = 200 #模拟200个样本 y=sim(n=nobs,Phi1=c(i1,p1),Phi$y#使用Tsay的检验确定最佳AR阶数 ord <- Tsay.test(y)$order#线性AR模型 #pacf(sunspot.year) #try AR order 4

R语言时间序列TAR阈值自回归模型
文章图片

_例子2._ 将AR(4)拟合到TAR模型
R语言时间序列TAR阈值自回归模型
文章图片

R语言时间序列TAR阈值自回归模型
文章图片

_例子3._ 将AR(3)拟合到TAR模型
R语言时间序列TAR阈值自回归模型
文章图片

R语言时间序列TAR阈值自回归模型
文章图片

_例子3._ 将AR(7)拟合到TAR模型
R语言时间序列TAR阈值自回归模型
文章图片

R语言时间序列TAR阈值自回归模型
文章图片

参考文献
恩德斯(W. Enders),2010年。应用计量经济学时间序列
R语言时间序列TAR阈值自回归模型
文章图片

最受欢迎的见解
1.在python中使用lstm和pytorch进行时间序列预测
2.python中利用长短期记忆模型lstm进行时间序列预测分析
3.使用r语言进行时间序列(arima,指数平滑)分析
4.r语言多元copula-garch-模型时间序列预测
5.r语言copulas和金融时间序列案例
6.使用r语言随机波动模型sv处理时间序列中的随机波动
7.r语言时间序列tar阈值自回归模型
8.r语言k-shape时间序列聚类方法对股票价格时间序列聚类
9.python3用arima模型进行时间序列预测

    推荐阅读