TensorFlow生成图实例详解

偏微分方程(PDE)是微分方程的主要类型, 它涉及具有多个自变量的未知函数的偏导数。关于偏微分方程, 我们专注于创建新图。
让我们假设有一个尺寸为500 * 500平方英寸的池塘-
N = 500
现在, 我们将计算偏微分方程并使用它形成相应的图。生成下面给出的计算图形的步骤。
在TensorFlow代码中将v1升级到v2的操作如下:

import tensorflow.compat.v1 as tftf.disable_v2_behavior()

步骤1-首先, 导入库进行仿真。
import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt

步骤2-包含用于将2D数组转换为卷积核的函数, 并简化成形图的2D卷积操作。
例:
def make_kernel(a):a = np.asarray(a)a = a.reshape (list(a.shape) + [1, 1])return tf.constant(a, dtype=1)def simple_conv(x, j):""2D convolutional operation is generated below"": x = tf.expand_dims(tf.expand_dims(x, 0), -1) y = tf.nn.depthwise_conv2d(x, j, [1, 1, 1, 1], padding = 'SAME') return y[0, :, :, 0]def laplace(x):"""Computing 2D laplacian of the arrays""": laplace_j = make_kernel ([[0.5, 1.0, 0.5], [1.0, -6., 1.0], [0.5, 1.0, 0.5]])return simple_conv(x, laplace_j)sess = tf.InteractiveSession()We are going to step 3 now.

步骤3-包括迭代次数并计算图以相应地显示记录:-
N = 500# Initial Conditions -- some raindrops hit the pond:# Setting the zero here:u_init = np.zeros([N, N], dtype = np.float32)ut_init = np.zeros([N, N], dtype = np.float32)#Few rain drops hit a pond at random points:for n in range(100):a, b = np.random.randint(0, N, 2)u_init[a, b] = np.random.uniform()plt.imshow(u_init)plt.show()# Parameters of Graphs# eps -- time resolution# damping -- wave dampingeps = tf.placeholder(tf.float32, shape = ())damping = tf.placeholder(tf.float32, shape = ())# Creating variable for simulation state U = tf.Variable(u_init)Ut = tf.Variable(ut_init)# Discretized PDE updated rule: U_ = U + eps * UtUt_ = Ut + eps*(laplace(U) - damping * Ut)# Updating the state of rules:step =tf.group(U.assign(U_), Ut.assign(Ut_))# Initializing state to initial conditionstf.initialize_all_variables().run()# Running 1000 steps of PDE and forming graph for i in range(1000):# Step simulating:step.run({eps: 0.03, damping: 0.04})# Visualizing every 50 stepsif i % 500 == 0:plt.imshow(U.eval())plt.show()

【TensorFlow生成图实例详解】输出
TensorFlow生成图实例详解

文章图片

    推荐阅读