Open3D人脸深度图转点云,点云表面重建

01 简介 Open3D:一个用于3D数据处理的现代库
Open3D是一个开源库,支持处理3D数据的软件的快速开发。Open3D前端在c++和Python中公开了一组精心选择的数据结构和算法。后端经过高度优化,并设置为并行化。我们欢迎来自开源社区的贡献。

  • Open3D的核心功能包括:- 三维数据结构- 三维数据处理算法- 现场重建- 表面对齐- 三维可视化- 物理渲染(PBR)- 3D机器学习支持PyTorch和TensorFlow- GPU加速核心3D操作- c++和Python版本可用 官方:
02 从python开始,深度图转点云 2.1 安装
安装系统ubuntu,mac win10都支持
conda create -n open3d python=3.7 activate open3d -i https://pypi.tuna.tsinghua.edu.cn/simple # 安装 pip install open3d # 验证 python -c "import open3d as o3d; print(o3d.__version__)"

测试可视化一个球:test3d.py
import open3d as o3d mesh = o3d.geometry.TriangleMesh.create_sphere()mesh.compute_vertex_normals() o3d.visualization.draw(mesh, raw_mode=True)

Open3D人脸深度图转点云,点云表面重建
文章图片
?
2.2 可视化人脸点云
OPEN3D支持各种格式的3d文件,pcd,ply等
import pandas as pd import numpy as np import open3d as o3d #ply_point_cloud = o3d.data.PLYPointCloud() pcd = o3d.io.read_point_cloud("./face.ply") #pcd = o3d.io.read_point_cloud("./my_points.txt", format='xyz') #pcd = o3d.io.read_point_cloud("./face.pcd") print(pcd) print(np.asarray(pcd.points)) o3d.visualization.draw_geometries([pcd], zoom=0.3412, front=[0.4257, -0.2125, -0.8795], lookat=[2.6172, 2.0475, 1.532], up=[-0.0694, -0.9768, 0.2024])

Open3D人脸深度图转点云,点云表面重建
文章图片
?
2.3 从深度图到点云
通常使用TOF等3d摄像头采集的格式一般只是深度图,需要经过转化,python这里的方式,先将深度图转化为3D坐标,存储为numpy格式,然后直接使用open3d转化为可视点云。
原本的csv可视的深度图如下:
Open3D人脸深度图转点云,点云表面重建
文章图片
?
data_path = "./face.csv" w = 320 h = 240 data = https://www.it610.com/article/pd.read_csv(data_path, header=None) points = np.zeros((w*h, 3), dtype=np.float32) n=0 for i in range(h): for j in range(w): deep = data.iloc[i, j] points[n][0] = j points[n][1] = i points[n][2] = deep #points.append([j,i,deep]) n=n+1pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(points) #o3d.io.write_point_cloud("../../test_data/sync.ply", pcd)print("==========") print(pcd) print(np.asarray(pcd.points)) print("==========")o3d.visualization.draw_geometries([pcd], zoom=0.3412, front=[0.4257, -0.2125, -0.8795], lookat=[2.6172, 2.0475, 1.532], up=[-0.0694, -0.9768, 0.2024])

点云结果:
Open3D人脸深度图转点云,点云表面重建
文章图片

这里只是简单的转化,没有根据相机内参进行映射,所以点的距离并不正常
查看相机内参,经过处理后可视化点云:
import pandas as pd import numpy as np import open3d as o3d #ply_point_cloud = o3d.data.PLYPointCloud() #pcd = o3d.io.read_point_cloud("./face.ply") #pcd = o3d.io.read_point_cloud("./my_points.txt", format='xyz') #pcd = o3d.io.read_point_cloud("./face.pcd")data_path = "./face.csv"camera_factor = 1; camera_cx = 180.8664; camera_cy = 179.088; camera_fx = 216.75; camera_fy = 214.62; w = 320 h = 240 data = https://www.it610.com/article/pd.read_csv(data_path, header=None) points = np.zeros((w*h, 3), dtype=np.float32) n=0 for i in range(h): for j in range(w): deep = data.iloc[i, j] points[n][2] = deep/camera_factor points[n][0] = (j-camera_cx)*points[n][2]/camera_fx points[n][1] = (i-camera_cy)*points[n][2]/camera_fy#points.append([j,i,deep]) n=n+1pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(points) #o3d.io.write_point_cloud("../../test_data/sync.ply", pcd)print("==========") print(pcd) print(np.asarray(pcd.points)) print("==========")#knot_data = https://www.it610.com/article/o3d.data.KnotMesh() #mesh = o3d.io.read_triangle_mesh("./face.ply") #print(mesh) #o3d.io.write_triangle_mesh("copy_of_knot.ply", mesh)o3d.visualization.draw_geometries([pcd], zoom=0.3412, front=[0.4257, -0.2125, -0.8795], lookat=[2.6172, 2.0475, 1.532], up=[-0.0694, -0.9768, 0.2024])

Open3D人脸深度图转点云,点云表面重建
文章图片
?
侧面:
Open3D人脸深度图转点云,点云表面重建
文章图片

2.4 点云分割聚类
保留前景信息,利用聚类和分割函数,也可先进行numpy预处理
import pandas as pd import numpy as np import open3d as o3d import matplotlib.pyplot as plt #ply_point_cloud = o3d.data.PLYPointCloud() #pcd = o3d.io.read_point_cloud("./face.ply") #pcd = o3d.io.read_point_cloud("./my_points.txt", format='xyz') #pcd = o3d.io.read_point_cloud("./face.pcd")data_path = "./face.csv"camera_factor = 10; camera_cx = 180.8664; camera_cy = 179.088; camera_fx = 216.75; camera_fy = 214.62; w = 320 h = 240 data = https://www.it610.com/article/pd.read_csv(data_path, header=None) points = np.zeros((w*h, 3), dtype=np.float32)n=0 for i in range(h): for j in range(w): deep = data.iloc[i, j] points[n][2] = deep/camera_factor points[n][0] = (j-camera_cx)*points[n][2]/camera_fx points[n][1] = (i-camera_cy)*points[n][2]/camera_fy#points.append([j,i,deep]) n=n+1points = points[points[:,2]< 100]pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(points) #o3d.io.write_point_cloud("../../test_data/sync.ply", pcd) #pcd.paint_uniform_color([1, 0.706, 0]) print("==========") print(pcd) print(np.asarray(pcd.points)) print("==========")##聚类啦 #with o3d.utility.VerbosityContextManager( #o3d.utility.VerbosityLevel.Debug) as cm: #labels = np.array( #pcd.cluster_dbscan(eps=0.02, min_points=10, print_progress=True))#max_label = labels.max() #print(f"point cloud has {max_label + 1} clusters") #colors = plt.get_cmap("tab20")(labels / (max_label if max_label > 0 else 1)) #colors[labels < 0] = 0 #pcd.colors = o3d.utility.Vector3dVector(colors[:, :3])plane_model, inliers = pcd.segment_plane(distance_threshold=0.01, ransac_n=3, num_iterations=1000) [a, b, c, d] = plane_model print(f"Plane equation: {a:.2f}x + {b:.2f}y + {c:.2f}z + {d:.2f} = 0")inlier_cloud = pcd.select_by_index(inliers) inlier_cloud.paint_uniform_color([1.0, 0, 0]) outlier_cloud = pcd.select_by_index(inliers, invert=True)#画个框玩玩 aabb = pcd.get_axis_aligned_bounding_box() aabb.color = (1, 0, 0) obb = pcd.get_oriented_bounding_box() obb.color = (0, 1, 0) #knot_data = https://www.it610.com/article/o3d.data.KnotMesh() #mesh = o3d.io.read_triangle_mesh("./face.ply") #print(mesh) #o3d.io.write_triangle_mesh("copy_of_knot.ply", mesh)o3d.visualization.draw_geometries([outlier_cloud, aabb], zoom=0.3412, front=[0.4257, -0.2125, -0.8795], lookat=[2.6172, 2.0475, 1.532], up=[-0.0694, -0.9768, 0.2024])

Open3D人脸深度图转点云,点云表面重建
文章图片
?
Open3D人脸深度图转点云,点云表面重建
文章图片

03 表面重建 3.1 泊松重建
在很多情况下,我们想要生成一个密集的3D几何体,例如,一个三角形网格。然而,从多视角立体视觉方法,或深度传感器,我们只能获得非结构化点云。为了从这个非结构化输入中得到一个三角形网格,我们需要执行表面重建。在文献中有两个方法和Open3D目前实现以下:α形状(Edelsbrunner1983),球旋转(Bernardini1999),泊松表面重建[Kazhdan2006]
泊松重建需要法线估计,直接调用:
pcd.normals = o3d.utility.Vector3dVector(np.zeros( (1, 3)))# invalidate existing normalspcd.estimate_normals()

Open3D人脸深度图转点云,点云表面重建
文章图片

泊松表面重建还将在点密度低的区域创建三角形,甚至可以外推到某些区域(见上图底部的老鹰输出)。create_from_point_cloud_poisson函数有第二个密度返回值,表示每个顶点的密度。低密度值意味着只支持来自输入点云的少量点。
Open3D人脸深度图转点云,点云表面重建
文章图片
?
3.2 Alpha shapes重建
alpha形状[Edelsbrunner1983]是凸包的泛化。
tetra_mesh, pt_map = o3d.geometry.TetraMesh.create_from_point_cloud(pcd) for alpha in np.logspace(np.log10(2.5), np.log10(0.1), num=2): print(f"alpha={alpha:.3f}") mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_alpha_shape( pcd, alpha, tetra_mesh, pt_map) mesh.compute_vertex_normals() o3d.visualization.draw_geometries([mesh], mesh_show_back_face=True)

Open3D人脸深度图转点云,点云表面重建
文章图片

3.3 Ball pivoting
球体旋转算法(BPA) [Bernardini1999]是一种与alpha形状相关的表面重建方法。
radii = [0.005, 0.01, 0.02, 0.04] rec_mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_ball_pivoting( pcd, o3d.utility.DoubleVector(radii)) o3d.visualization.draw_geometries([pcd, rec_mesh])

【Open3D人脸深度图转点云,点云表面重建】Open3D人脸深度图转点云,点云表面重建
文章图片

    推荐阅读