书史足自悦,安用勤与劬。这篇文章主要讲述工作十年还分不清MySQL普通索引和唯一索引怎么办?相关的知识,希望能为你提供帮助。
1 概念区分
- 普通索引和唯一索引
- 主键和唯一索引
2 案例引入某居民系统,每人有唯一身份证号。如果系统需要按身份证号查姓名,就会执行类似如下SQL:
select name from CUser where id_card = \'ooxx\';
然后你肯定会在id_card字段建索引。但id_card字段较大,不推荐将其做主键。于是现有俩选择:
- 给id_card字段创建唯一索引
- 创建一个普通索引
再看如下案例:假设字段 k 上的值都不重复。
- InnoDB的索引组织结构:
文章图片
接下来分析性能。
3 查询性能
select id from T where k=4
通过B+树从树根开始层序遍历到叶节点,可认为数据页内部是通过二分法搜索。
- 普通索引,查找到满足条件的第一个记录(4,400)后,需查找下个记录,直到碰到第一个不满足k=4的记录
- 唯一索引,由于索引具备唯一性,查找到第一个满足条件的记录后,就会停止检索
InnoDB数据按数据页单位读写。即读一条记录时,并非将该一个记录从磁盘读出,而以页为单位,将其整体读入内存。
因此普通索引,要多做一次“查找和判断下一条记录”的操作,也就一次指针寻找和一次计算。 如果k=4记录恰为该数据页最后一个记录,那么要取下个记录,还得读取下个数据页,操作稍微复杂。 对整型字段,一个数据页可存近千key,因此这种情况概率其实也很低。因此计算平均性能差异时,可认为该操作成本对现在CPU开销忽略不计。
我们知道 mysql 有 change buffer。
5 更新性能现在来看往表中插入一个新记录(4,400),InnoDB会做什么?
需要区分该记录要更新的目标页是否在内存:
5.1 在内存
- 唯一索引
- 普通索引
普通索引和唯一索引对更新语句性能影响的差别,只是一个判断,耗费微小CPU时间。
5.2 不在内存
- 唯一索引
- 普通索引
将数据从磁盘读入内存涉及随机IO访问,是数据库里面成本最高操作之一。而change buffer减少随机磁盘访问,所以更新性能提升明显。
6 实践中的索引选择普通索引和唯一索引究竟如何抉择?这两类索引在查询性能上没差别,主要考虑对更新性能影响。所以,推荐尽量选择普通索引。
如果所有更新后面,都紧跟对该记录的查询,那么该关闭change buffer。 而在其他情况下,change buffer都能提升更新性能。 普通索引和change buffer的配合使用,对于数据量大的表的更新优化还是很明显的。
在使用机械硬盘时,change buffer机制的收效非常显著。 所以,当你有一个类似“历史数据”的库,并且出于成本考虑用机械硬盘时,应该关注这些表里的索引,尽量使用普通索引,把change buffer 开大,确保“历史数据”表的数据写速度。
6 change buffer 和 redo logWAL 提升性能的核心机制,也是尽量减少随机读写,这两个概念易混淆。 所以,这里我把它们放到了同一个流程里来说明区分。
6.1 插入流程
insert into t(id,k) values(id1,k1),(id2,k2);
假设当前k索引树的状态,查找到位置后,k1所在数据页在内存(InnoDB buffer pool),k2数据页不在内存。
- 带change buffer的更新流程图,图中两个箭头都是后台操作,不影响更新响应。
文章图片
该更新做了如下操作:
- Page1在内存,直接更新内存
- Page2不在内存,就在change buffer区,缓存下“往Page2插一行记录”的信息
- 将前两个动作记入redo log
6.2 怎么处理之后的读请求?
select * from t where k in (k1, k2);
读语句紧随更新语句,内存中的数据都还在,此时这俩读操作就与系统表空间和 redo log 无关。所以在图中就没画这俩。
- 带change buffer的读过程
文章图片
要读Page2时,需把Page2从磁盘读入内存,然后应用change buffer里面的操作日志,生成一个正确版本并返回结果。 可见直到需读Page2时,该数据页才被读入内存。
所以,要简单对比这俩机制对更新性能影响
- redo log 主要节省随机写磁盘的IO消耗(转成顺序写)
- change buffer主要节省随机读磁盘的IO消耗
6.1 关于到底是否使用唯一索引主要纠结在“业务可能无法确保”。本文前提是“业务代码已经保证不会写入重复数据”下,讨论性能问题。
- 如果业务不能保证,或者业务就是要求数据库来做约束,那么没得选,必须创建唯一索引。这种情况下,本文意义在于,如果碰上大量插入数据慢、内存命中率低时,多提供一个排查思路。
- 然后,在一些“归档库”的场景,可考虑使用唯一索引的。比如,线上数据只需保留半年,然后历史数据保存在归档库。此时,归档数据已是确保没有唯一键冲突。要提高归档效率,可考虑把表的唯一索引改普通索引。
6.3 merge的过程是否会把数据直接写回磁盘?merge执行流程
- 从磁盘读入数据页到内存(老版本数据页)
- 从change buffer找出该数据页的change buffer 记录(可能有多个),依次应用,得到新版数据页
- 写redo log
至此merge过程结束。 这时,数据页和内存中change buffer对应磁盘位置都尚未修改,是脏页,之后各自刷回自己物理数据,就是另外一过程。
问题思考在构造第一个例子的过程,通过session A的配合,让session B删除数据后又重新插入一遍数据,然后就发现explain结果中,rows字段从10001变成37000多。 而如果没有session A的配合,只是单独执行delete from t 、call idata()、explain这三句话,会看到rows字段其实还是10000左右。这是什么原因呢?
如果没有复现,检查
- 隔离级别是不是RR(Repeatable Read,可重复读)
- 创建的表t是不是InnoDB引擎
【工作十年还分不清MySQL普通索引和唯一索引怎么办()】然后你会说,不对啊,主键上的数据也不能删,那没有使用force index的语句,使用explain命令看到的扫描行数为什么还是100000左右?(潜台词,如果这个也翻倍,也许优化器还会认为选字段a作为索引更合适) 是的,不过这个是主键,主键是直接按照表的行数来估计的。而表的行数,优化器直接用的是show table status的值。 大家的机器如果IO能力比较差的话,做这个验证的时候,可以把innodb_flush_log_at_trx_commit 和 sync_binlog 都设置成0。
推荐阅读
- u盘被写保护怎样办?本文教您如何解除
- IntelliJ IDEA 的 Win 和 Mac 快捷键大全!!
- 小学生都能读懂的网络协议之:WebSocket
- 0009 - 基于MapReduce的应用案例
- 好看视频Android重构——围绕于播放器的重构实践
- 如何用人工智能技术优化 WebRTC 产品(内附具体方案)
- 带你读懂垃圾回收算法
- python——用Turtle画画写名字
- 项管行知06--需求与跟踪