傅里叶变换
-
-
-
- 傅里叶变换
-
- 理论基础
- Numpy实现傅里叶变换
-
- 实现傅里叶变换
- 实现逆傅里叶变换
- 高通滤波示例
- OpenCV实现傅里叶变换
-
- 实现傅里叶变换
- 实现逆傅里叶变换
- 低通滤波示例
-
-
傅里叶变换 图像处理一般分为空间域处理和频率域处理。
空间域处理是直接对图像内的像素进行处理。
空间域处理主要划分为灰度变换和空间滤波两种形式。
- 灰度变换是对图像内的单个像素进行处理,比如调节对比度和处理阈值等。
- 空间滤波涉及图像质量的改变,例如图像平滑处理。空间域处理的计算简单方便,运算速度更快。
理论基础 时间差,在傅里叶变换里就是相位。相位表述的是与时间差相关的信息。
在图像处理过程中,傅里叶变换就是将图像分解为正弦分量和余弦分量两部分,即将图像从空间域转换到频域。
数字图像经过傅里叶变换后,得到的频域值是复数。因此,显示傅里叶变换的结果需要使用实数图像(real image)加虚数图像(complex image),或者幅度图像(magnitude image)加相位图像(phase image)的形式。
因为幅度图像包含了原图像中我们所需要的大部分信息,所以在图像处理过程中,通常仅使用幅度图像。
如果希望先在频域内对图像进行处理,再通过逆傅里叶变换得到修改后的空域图像,就必须同时保留幅度图像和相位图像。
对图像进行傅里叶变换后,会得到图像中的低频和高频信息。
低频信息对应图像内变化缓慢的灰度分量。高频信息对应图像内变化越来越快的灰度分量,是由灰度的尖锐过渡造成的。
傅里叶变换的目的,就是为了将图像从空域转换到频域,并在频域内实现对图像内特定对象的处理,然后再对经过处理的频域图像进行逆傅里叶变换得到空域图像。
傅里叶变换在图像处理领域发挥着非常关键的作用,可以实现图像增强、图像去噪、边缘检测、特征提取、图像压缩和加密等。
Numpy实现傅里叶变换 Numpy模块中的fft2()函数可以实现图像的傅里叶变换。
实现傅里叶变换 Numpy提供的实现傅里叶变换的函数是numpy.fft.fft2(),它的语法格式是:
返回值 = numpy.fft.fft2(原始图像)
参数“原始图像”的类型是灰度图像,函数的返回值是一个复数数组(complex ndarray)。
经过该函数的处理,就能得到图像的频谱信息。
此时,图像频谱中的零频率分量位于频谱图像(频域图像)的左上角
文章图片
为了便于观察,通常会使用numpy.fft.fftshift()函数将零频率成分移动到频域图像的中心位置。
函数numpy.fft.fftshift()的语法格式是:
返回值=numpy.fft.fftshift(原始频谱)
使用该函数处理后,图像频谱中的零频率分量会被移到频域图像的中心位置,对于观察傅里叶变换后频谱中的零频率部分非常有效。
对图像进行傅里叶变换后,得到的是一个复数数组。
为了显示为图像,需要将它们的值调整到[0, 255]的灰度空间内,使用的公式为:
像素新值=20*np.log(np.abs(频谱值))
用Numpy实现傅里叶变换,观察得到的频谱图像。
import cv2
import numpy as np
import matplotlib.pyplot as pltimg = cv2.imread('./img/hand1.png',0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20*np.log(np.abs(fshift))
plt.subplot(121)
plt.imshow(img, cmap = 'gray')
plt.title('original')
plt.axis('off')
plt.subplot(122)
plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('result')
plt.axis('off')
plt.show()
文章图片
实现逆傅里叶变换 注意: 如果在傅里叶变换过程中使用了numpy.fft.fftshift()函数移动零频率分量,那么在逆傅里叶变换过程中,需要先使用numpy.fft.ifftshift()函数将零频率分量移到原来的位置,再进行逆傅里叶变换
【opencv|opencv 傅里叶变换(python)】函数numpy.fft.ifftshift()是numpy.fft.fftshift()的逆函数,其语法格式为:
调整后的频谱 = numpy.fft.ifftshift(原始频谱)
numpy.fft.ifft2()函数可以实现逆傅里叶变换,返回空域复数数组。
它是numpy.fft.fft2()的逆函数,该函数的语法格式为:
返回值=numpy.fft.ifft2(频域数据)
函数numpy.fft.ifft2()的返回值仍旧是一个复数数组(complex ndarray)。
逆傅里叶变换得到的空域信息是一个复数数组,需要将该信息调整至[0, 255]灰度空间内,使用的公式为:
iimg = np.abs(逆傅里叶变换结果)
在Numpy内实现傅里叶变换、逆傅里叶变换,观察逆傅里叶变换的结果图像。
import cv2
import numpy as np
import matplotlib.pyplot as pltimg = cv2.imread('./img/hand1.png',0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)ishift = np.fft.ifftshift(fshift)
iimg = np.fft.ifft2(ishift) iimg = np.abs(iimg)
plt.subplot(121), plt.imshow(img, cmap = 'gray')
plt.title('original'), plt.axis('off')
plt.subplot(122), plt.imshow(iimg, cmap = 'gray')
plt.title('iimg'), plt.axis('off')
plt.show()
文章图片
高通滤波示例 一幅图像内,同时存在着高频信号和低频信号。
- 低频信号对应图像内变化缓慢的灰度分量。例如,在一幅大草原的图像中,低频信号对应着颜色趋于一致的广袤草原。
- 高频信号对应图像内变化越来越快的灰度分量,是由灰度的尖锐过渡造成的。如果在上面的大草原图像中还有一头狮子,那么高频信号就对应着狮子的边缘等信息。
- 允许低频信号通过的滤波器称为低通滤波器。低通滤波器使高频信号衰减而对低频信号放行,会使图像变模糊。
- 允许高频信号通过的滤波器称为高通滤波器。高通滤波器使低频信号衰减而让高频信号通过,将增强图像中尖锐的细节,但是会导致图像的对比度降低。
通过对图像的频域处理,可以实现图像增强、图像去噪、边缘检测、特征提取、压缩和加密等操作。
在Numpy内对图像进行傅里叶变换,得到其频域图像。然后,在频域内将低频分量的值处理为0,实现高通滤波。最后,对图像进行逆傅里叶变换,得到恢复的原始图像。
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('./img/hand1.png',0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)
fshift[crow-30:crow+30, ccol-30:ccol+30] = 0
ishift = np.fft.ifftshift(fshift)
iimg = np.fft.ifft2(ishift)
iimg = np.abs(iimg)
plt.subplot(121), plt.imshow(img, cmap = 'gray')
plt.title('original'), plt.axis('off')
plt.subplot(122), plt.imshow(iimg, cmap = 'gray')
plt.title('iimg'), plt.axis('off')
plt.show()
文章图片
OpenCV实现傅里叶变换 OpenCV提供了函数cv2.dft()和cv2.idft()来实现傅里叶变换和逆傅里叶变换
实现傅里叶变换 函数cv2.dft()的语法格式为:
返回结果=cv2.dft(原始图像,转换标识)
在使用该函数时,需要注意参数的使用规范:
- 对于参数“原始图像”,要首先使用np.float32()函数将图像转换成np.float32格式。
- “转换标识”的值通常为“cv2.DFT_COMPLEX_OUTPUT”,用来输出一个复数阵列。
经过函数cv2.dft()的变换后,得到了原始图像的频谱信息。
此时,零频率分量并不在中心位置,为了处理方便需要将其移至中心位置,可以用函数numpy.fft.fftshift()实现。
例如,如下语句将频谱图像dft中的零频率分量移到频谱中心,得到了零频率分量位于中心的频谱图像dftshift。
dftShift = np.fft.fftshift(dft)
经过上述处理后,频谱图像还只是一个由实部和虚部构成的值。要将其显示出来,还要做进一步的处理才行。
函数cv2.magnitude()可以计算频谱信息的幅度。该函数的语法格式为:
返回值=cv2.magnitude(参数1,参数2)
- 参数1:浮点型x坐标值,也就是实部。
- 参数2:浮点型y坐标值,也就是虚部,它必须和参数1具有相同的size
文章图片
得到频谱信息的幅度后,通常还要对幅度值做进一步的转换,以便将频谱信息以图像的形式展示出来。简单来说,就是需要将幅度值映射到灰度图像的灰度空间[0, 255]内,使其以灰度图像的形式显示出来。
这里使用的公式为:
result = 20*np.log(cv2.magnitude(实部,虚部))
import numpy as np
import cv2
img = cv2.imread('./img/hand1.png',0)
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
print(dft)
dftShift = np.fft.fftshift(dft)
print(dftShift)
result = 20*np.log(cv2.magnitude(dftShift[:, :,0], dftShift[:, :,1]))#两个参数,需要拆分通道
print(result)
用OpenCV函数对图像进行傅里叶变换,并展示其频谱信息。
import numpy as np
import cv2
import matplotlib.pyplot as pltimg = cv2.imread('./img/hand1.png',0)
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
dftShift = np.fft.fftshift(dft)
result = 20*np.log(cv2.magnitude(dftShift[:, :,0], dftShift[:, :,1]))
plt.subplot(121), plt.imshow(img, cmap = 'gray')
plt.title('original'), plt.axis('off')
plt.subplot(122), plt.imshow(result, cmap = 'gray')
plt.title('result'), plt.axis('off')
plt.show()
实现逆傅里叶变换 在OpenCV中,使用函数cv2.idft()实现逆傅里叶变换,该函数是傅里叶变换函数cv2.dft()的逆函数。其语法格式为:
返回结果=cv2.idft(原始数据)
对图像进行傅里叶变换后,通常会将零频率分量移至频谱图像的中心位置。如果使用函数numpy.fft.fftshift()移动了零频率分量,那么在进行逆傅里叶变换前,要使用函数numpy.fft.ifftshift()将零频率分量恢复到原来位置。
注意: 在进行逆傅里叶变换后,得到的值仍旧是复数,需要使用函数cv2.magnitude()计算其幅度。
用OpenCV函数对图像进行傅里叶变换、逆傅里叶变换,并展示原始图像及经过逆傅里叶变换后得到的图像。
import numpy as np
import cv2
import matplotlib.pyplot as pltimg = cv2.imread('./img/hand1.png',0)
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
dftShift = np.fft.fftshift(dft)ishift = np.fft.ifftshift(dftShift)
iImg = cv2.idft(ishift)
iImg= cv2.magnitude(iImg[:, :,0], iImg[:, :,1]) # 计算幅度
plt.subplot(121), plt.imshow(img, cmap = 'gray')
plt.title('original'), plt.axis('off')
plt.subplot(122), plt.imshow(iImg, cmap = 'gray')
plt.title('inverse'), plt.axis('off')
plt.show()
低通滤波示例 在一幅图像内,低频信号对应图像内变化缓慢的灰度分量。图像进行低通滤波后会变模糊。
文章图片
实现的中间步骤
rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)
mask = np.zeros((rows, cols,2), np.uint8) # 二维的原因,有实部和虚部
mask[crow-30:crow+30, ccol-30:ccol+30,:] = 1
然后,将其与频谱图像进行运算,实现低通滤波。这里采用的运算形式是:
fShift = dftShift*mask
使用函数cv2.dft()对图像进行傅里叶变换,得到其频谱图像。然后,在频域内将其高频分量的值处理为0,实现低通滤波。最后,对图像进行逆傅里叶变换,得到恢复的原始图像。
import numpy as np
import cv2
import matplotlib.pyplot as plt
img = cv2.imread('./img/hand1.png',0)
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
dftShift = np.fft.fftshift(dft)rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)
mask = np.zeros((rows, cols,2), np.uint8)
#两个通道,与频域图像匹配
mask[crow-30:crow+30, ccol-30:ccol+30,:] = 1
fShift = dftShift*mask
ishift = np.fft.ifftshift(fShift)
iImg = cv2.idft(ishift)
iImg= cv2.magnitude(iImg[:, :,0], iImg[:, :,1])plt.subplot(121), plt.imshow(img, cmap = 'gray')
plt.title('original'), plt.axis('off')
plt.subplot(122), plt.imshow(iImg, cmap = 'gray')
plt.title('inverse'), plt.axis('off')
plt.show()
文章图片
经过低通滤波后,图像的边缘信息被削弱了。
时域卷积 --> 频域乘积
推荐阅读
- 如何使用Python和其他语言为变量赋值()
- 如何在现有的Pandas DataFrame中添加一行()
- Python如何使用Selenium弹出登录窗口()
- 深度学习|基于图卷积网络(GCN)的表面缺陷识别方法(上)
- 人工智能|机器学习——从0开始构建自己的GAN网络
- sklearn|LightGBM原理与实践简记
- Python hmac –消息身份验证的键哈希介绍
- OpenCV中的直方图均衡介绍和代码示例
- 为什么不推荐在Python中使用import*()