本文概述
- C
- C
- C
反正切是切线函数的反函数。它返回切线为给定数字的角度。
文章图片
catan()是一个内置函数< complex.h> 头文件, 返回复杂反正切(或反正切)任何常数, 它根据闭合区间中的反正切线将假想轴进行划分[-i, + i](我代表iota), 用于评估复杂的对象说Z在虚轴上, 而要确定是实数还是整数的复杂对象, 则在内部调用预定义方法, 如下所示:
序号 | 方法 |
返回类型 |
1. |
atan()函数采用数据类型为double的复数z, 它确定实复数的反正切 | 对于double类型的参数, 返回沿实轴[-PI / 2, + PI / 2]的范围内的复杂反正切。 |
2. |
atanf()函数采用数据类型为float double的复数z, 它确定实复数的反正切。 | 对于float类型的参数, 返回沿实轴[-PI / 2, + PI / 2]的范围内的复杂反正切。 |
3. |
atanl()函数采用数据类型为long double的复数z, 它确定实复数的反正切 | 对于long long类型的参数, 返回沿实轴[-PI / 2, + PI / 2]的范围内的复数反正切。 |
4. |
catan()函数采用数据类型为double的复数z, 这也允许复数的虚部 | 对于类型为double的复杂对象, 返回复杂的反正切线位于沿虚轴[-i, + i]的范围内 |
5. |
catanf()函数采用数据类型为float double的复数z, 这也允许复数的虚部 | 对于类型为float的复杂对象, 返回复杂的反正切线位于沿假想轴[-i, + i]的范围内 |
6. |
catanl()函数采用数据类型为long double的复数z, 这也允许复数的虚部 | 返回类型为long double的复杂对象的复杂反正切位于沿着虚轴[-i, + i]的范围内 |
atan(double arg);
atanf(float arg);
atanl(long double arg);
where arg is a floating-point valuecatan(double complex z);
catanf(float complex z);
catanl( long double complex z);
where z is a Type – generic macro
参数:这些函数接受一个强制性参数?指定反正切。该参数可以是double, float或long double数据类型.
返回值:该函数返回复弧切线/弧切线根据传递的参数类型。
下面的程序说明了上述方法:
程序1:该程序将说明函数晒黑(), atanf()和atanl()计算浮点参数的反正切的主值。如果由于下溢而导致量程错误, 则四舍五入后将返回正确的结果。
C
//C program to illustrate the use
//of functions atan(), atanf(), //and atanl()
#include <
math.h>
#include <
stdio.h>
//Driver Code
int main()
{
//For function atan()
printf ( "atan(1) = %lf, " , atan (1));
printf ( " 4*atan(1)=%lf\n" , 4 * atan (1));
printf ( "atan(-0.0) = %+lf, " , atan (-0.0));
printf ( "atan(+0.0) = %+lf\n" , atan (0));
//For special values INFINITY
printf ( "atan(Inf) = %lf, " , atan (INFINITY));
printf ( "2*atan(Inf) = %lf\n\n" , 2 * atan (INFINITY));
//For function atanf()
printf ( "atanf(1.1) = %f, " , atanf(1.1));
printf ( "4*atanf(1.5)=%f\n" , 4 * atanf(1.5));
printf ( "atanf(-0.3) = %+f, " , atanf(-0.3));
printf ( "atanf(+0.3) = %+f\n" , atanf(0.3));
//For special values INFINITY
printf ( "atanf(Inf) = %f, " , atanf(INFINITY));
printf ( "2*atanf(Inf) = %f\n\n" , 2 * atanf(INFINITY));
//For function atanl()
printf ( "atanl(1.1) = %Lf, " , atanl(1.1));
printf ( "4*atanl(1.7)=%Lf\n" , 4 * atanl(1.7));
printf ( "atanl(-1.3) = %+Lf, " , atanl(-1.3));
printf ( "atanl(+0.3) = %+Lf\n" , atanl(0.3));
//For special values INFINITY
printf ( "atanl(Inf) = %Lf, " , atanl(INFINITY));
printf ( "2*atanl(Inf) = %Lf\n\n" , 2 * atanl(INFINITY));
return 0;
}
输出如下:
atan(1) = 0.785398, 4*atan(1)=3.141593
atan(-0.0) = -0.000000, atan(+0.0) = +0.000000
atan(Inf) = 1.570796, 2*atan(Inf) = 3.141593atanf(1.1) = 0.832981, 4*atanf(1.5)=3.931175
atanf(-0.3) = -0.291457, atanf(+0.3) = +0.291457
atanf(Inf) = 1.570796, 2*atanf(Inf) = 3.141593atanl(1.1) = 0.832981, 4*atanl(1.7)=4.156289
atanl(-1.3) = -0.915101, atanl(+0.3) = +0.291457
atanl(Inf) = 1.570796, 2*atanl(Inf) = 3.141593
程序2:该程序将说明函数catan(), catanf()和catanl()计算复数反正切的主值作为参数。
C
//C program to illustrate the use
//of functions catan(), catanf(), //and catanl()
#include <
complex.h>
#include <
float.h>
#include <
stdio.h>
//Driver Code
int main()
{
//Given Complex Number
double complex z1 = catan(2 * I);
//Function catan()
printf ( "catan(+0 + 2i) = %lf + %lfi\n" , creal(z1), cimag(z1));
//Complex(0, + INFINITY)
double complex z2 = 2
* catan(2 * I * DBL_MAX);
printf ( "2*catan(+0 + i*Inf) = %lf%+lfi\n" , creal(z2), cimag(z2));
printf ( "\n" );
//Function catanf()
float complex z3 = catanf(2 * I);
printf ( "catanf(+0 + 2i) = %f + %fi\n" , crealf(z3), cimagf(z3));
//Complex(0, + INFINITY)
float complex z4 = 2
* catanf(2 * I * DBL_MAX);
printf ( "2*catanf(+0 + i*Inf) = %f + %fi\n" , crealf(z4), cimagf(z4));
printf ( "\n" );
//Function catanl()
long double complex z5 = catanl(2 * I);
printf ( "catan(+0+2i) = %Lf%+Lfi\n" , creall(z5), cimagl(z5));
//Complex(0, + INFINITY)
long double complex z6 = 2
* catanl(2 * I * DBL_MAX);
printf ( "2*catanl(+0 + i*Inf) = %Lf + %Lfi\n" , creall(z6), cimagl(z6));
}
输出如下:
catan(+0 + 2i) = 1.570796 + 0.549306i
2*catan(+0 + i*Inf) = 3.141593+0.000000icatanf(+0 + 2i) = 1.570796 + 0.549306i
2*catanf(+0 + i*Inf) = 3.141593 + 0.000000icatan(+0+2i) = 1.570796+0.549306i
2*catanl(+0 + i*Inf) = 3.141593 + 0.000000i
程序3:该程序将说明函数catanh(), catanhf()和catanhl()计算的复弧双曲正切?沿实轴并在区间内[-i * PI / 2, + i * PI / 2]沿假想轴。
C
//C program to illustrate the use
//of functionscatanh(), catanhf(), //and catanhl()
#include <
complex.h>
#include <
stdio.h>
//Driver Code
int main()
{
//Function catanh()
double complex z1 = catanh(2);
printf ( "catanh(+2+0i) = %lf%+lfi\n" , creal(z1), cimag(z1));
//for any z, atanh(z) = atan(iz)/i
//I denotes Imaginary
//part of the complex number
double complex z2 = catanh(1 + 2 * I);
printf ( "catanh(1+2i) = %lf%+lfi\n\n" , creal(z2), cimag(z2));
//Function catanhf()
float complex z3 = catanhf(2);
printf ( "catanhf(+2+0i) = %f%+fi\n" , crealf(z3), cimagf(z3));
//for any z, atanh(z) = atan(iz)/i
float complex z4 = catanhf(1 + 2 * I);
printf ( "catanhf(1+2i) = %f%+fi\n\n" , crealf(z4), cimagf(z4));
//Function catanh()
long double complex z5 = catanhl(2);
printf ( "catanhl(+2+0i) = %Lf%+Lfi\n" , creall(z5), cimagl(z5));
//for any z, atanh(z) = atan(iz)/i
long double complex z6 = catanhl(1 + 2 * I);
printf ( "catanhl(1+2i) = %Lf%+Lfi\n\n" , creall(z6), cimagl(z6));
}
【如何使用计算反正切arc(实现示例)】输出如下:
catanh(+2+0i) = 0.549306+1.570796i
catanh(1+2i) = 0.173287+1.178097icatanhf(+2+0i) = 0.549306+1.570796i
catanhf(1+2i) = 0.173287+1.178097icatanhl(+2+0i) = 0.549306+1.570796i
catanhl(1+2i) = 0.173287+1.178097i
推荐阅读
- 如何在不使用sizeof的情况下在C/C++中查找数组的大小()
- 如何在cmd(命令行)上执行C#程序()
- 如何有效地对20年代的大列表日期进行排序
- Python如何使用Pandas实现vLookup(代码实例)
- 如何使用PHP将HTML标签显示为纯文本
- 后端|Mybatis-plus实现数据库的增删改查操作
- 编译mate-control-center(error: required directory ./help does not exist)
- 生产制造业如何谋求数字化转型(需要哪些信息化系统做支撑?)
- No package ‘gtk+-3.0‘ found