Spark+ES+ClickHouse 构建DMP用户画像

博观而约取,厚积而薄发。这篇文章主要讲述Spark+ES+ClickHouse 构建DMP用户画像相关的知识,希望能为你提供帮助。
??立即下载??

??立即下载??
行业竞争越来越激烈,精细化经营成为各企业取胜的秘籍。用户画像系统作为提供精准用户数据的重要来源,已经成为企业必备的核心平台,人才缺口大,薪资高。本课程将基于大数据主流技术,数据挖掘核心算法,带你打造企业实用的用户画像平台,提升你的个人竞争力。
Cluster Manager:在standalone模式中即为Master主节点,控制整个集群,监控worker。在YARN模式中为资源管理器Worker节点:从节点,负责控制计算节点,启动Executor或者Driver。
Driver: 运行Application 的main()函数
Executor:执行器,是为某个Application运行在worker node上的一个进程
Spark与hadoop:
Hadoop有两个核心模块,分布式存储模块HDFS和分布式计算模块Mapreduce
spark本身并没有提供分布式文件系统,因此spark的分析大多依赖于Hadoop的分布式文件系统HDFS
Hadoop的Mapreduce与spark都可以进行数据计算,而相比于Mapreduce,spark的速度更快并且提供的功能更加丰富
构建Spark Application的运行环境,启动SparkContextSparkContext向资源管理器(可以是Standalone,Mesos,Yarn)申请运行Executor资源,并启动StandaloneExecutorbackend,
Executor向SparkContext申请Task
SparkContext将应用程序分发给Executor
SparkContext构建成DAG图,将DAG图分解成Stage、将Taskset发送给Task Scheduler,最后由Task Scheduler将Task发送给Executor运行
Task在Executor上运行,运行完释放所有资源
Spark运行特点:
每个Application获取专属的executor进程,该进程在Application期间一直驻留,并以多线程方式运行Task。这种Application隔离机制是有优势的,无论是从调度角度看(每个Driver调度他自己的任务),还是从运行角度看(来自不同Application的Task运行在不同JVM中),当然这样意味着Spark Application不能跨应用程序共享数据,除非将数据写入外部存储系统
Spark与资源管理器无关,只要能够获取executor进程,并能保持相互通信就可以了
提交SparkContext的Client应该靠近Worker节点(运行Executor的节点),最好是在同一个Rack里,因为Spark Application运行过程中SparkContext和Executor之间有大量的信息交换
Task采用了数据本地性和推测执行的优化机制
常用术语:
Application: Appliction都是指用户编写的Spark应用程序,其中包括一个Driver功能的代码和分布在集群中多个节点上运行的Executor代码
Driver: Spark中的Driver即运行上述Application的main函数并创建SparkContext,创建SparkContext的目的是为了准备Spark应用程序的运行环境,在Spark中有SparkContext负责与ClusterManager通信,进行资源申请、任务的分配和监控等,当Executor部分运行完毕后,Driver同时负责将SparkContext关闭,通常用SparkContext代表Driver
Executor: 某个Application运行在worker节点上的一个进程, 该进程负责运行某些Task, 并且负责将数据存到内存或磁盘上,每个Application都有各自独立的一批Executor, 在Spark on Yarn模式下,其进程名称为CoarseGrainedExecutor Backend。一个CoarseGrainedExecutor Backend有且仅有一个Executor对象, 负责将Task包装成taskRunner,并从线程池中抽取一个空闲线程运行Task, 这个每一个oarseGrainedExecutor Backend能并行运行Task的数量取决与分配给它的cpu个数
Cluter Manager:指的是在集群上获取资源的外部服务。目前有三种类型
Standalon : spark原生的资源管理,由Master负责资源的分配
Apache Mesos:与hadoop MR兼容性良好的一种资源调度框架
Hadoop Yarn: 主要是指Yarn中的ResourceManager
Worker: 集群中任何可以运行Application代码的节点,在Standalone模式中指的是通过slave文件配置的Worker节点,在Spark on Yarn模式下就是NoteManager节点
Task: 被送到某个Executor上的工作单元,但hadoopMR中的MapTask和ReduceTask概念一样,是运行Application的基本单位,多个Task组成一个Stage,而Task的调度和管理等是由TaskScheduler负责
Job: 包含多个Task组成的并行计算,往往由Spark Action触发生成, 一个Application中往往会产生多个Job
【Spark+ES+ClickHouse 构建DMP用户画像】Stage: 每个Job会被拆分成多组Task, 作为一个TaskSet, 其名称为Stage,Stage的划分和调度是有DAGScheduler来负责的,Stage有非最终的Stage(Shuffle Map Stage)和最终的Stage(Result Stage)两种,Stage的边界就是发生shuffle的地方



    推荐阅读