1、定义
将树的每一个节点附加一个权值,树中所有叶子节点的带权路径长度之和成为该树的带权路径长度。其计算公式如下:
文章图片
带权路径长度WPL最小的二叉树成为哈夫曼树(或最优二叉树)。
规定哈夫曼树种左分支为0,右分支为1,则从根节点到每个叶子节点所经过的分支对应的0和1组成的序列便为该节点对应字符的编码,这样的编码成为哈夫曼编码。
详细定义可查看博客:https://blog.csdn.net/l494926429/article/details/52494926
2、应用
哈夫曼树主要用于哈夫曼编码,可以起到压缩作用。
3、实现
(1)哈夫曼树的类型定义
typedef struct HTNode
{
char data;
double weight;
int parent, left, right;
}HTNode;
(2)哈夫曼树的构造算法
//returns the huffman tree
HTNode* CreateHTNode(char* src, double* weight, int n)
{
int h_n = 2 * n - 1;
//init the huffman tree
HTNode* h = new HTNode[h_n];
for (int i = 0;
i < n;
i++)
{
h[i].data = https://www.it610.com/article/src[i];
h[i].weight = weight[i];
h[i].parent = h[i].left = h[i].right = -1;
}
for (int i = n;
i < h_n;
i++)
h[i].parent = -1;
//create the huffman tree
int min1_index, min2_index;
//the index of the least two weight
for(int i = n ;
i < h_n;
i++)
{
min1_index = min2_index = -1;
for (int j = 0;
j < i;
j++)
{
if (h[j].parent == -1)
{
if (min1_index == -1 || h[j].weight < h[min1_index].weight)
{
min2_index = min1_index;
min1_index = j;
}
else if (min2_index == -1 || h[j].weight < h[min2_index].weight)
{
min2_index = j;
}
}
}
h[i].weight = h[min1_index].weight + h[min2_index].weight;
h[i].left = min1_index;
h[i].right = min2_index;
h[min1_index].parent = h[min2_index].parent = i;
}
return h;
}
(3)哈夫曼编码
//returns the huffman code of the huffman tree
map* CreateHCode(HTNode* h, int n)
{
map* m = new map;
for (int i = 0;
i < n;
i++)
{
string t = "";
int k = i;
while (h[k].parent != -1)
{
if (h[h[k].parent].left == k)
t += '0';
else
t += '1';
k = h[k].parent;
}
reverse(t.begin(), t.end());
(*m)[h[i].data] = t;
}
return m;
}
4、测试
【数据结构和算法|哈夫曼树及其编码】假设用于通信的电文仅由 8 个字母组成,字母在电文中出现的频率分别为 0.07,0.19,0.02,0.06,0.32,0.03,0.21,0.10。试为这 8 个字母设计哈夫曼编码。
#include
#include
#include
推荐阅读