0 引言
指针(Pointer)是 C、C++ 以及 Java、Go 等语言的一个非常核心且重要的概念,而引用(Reference)是在指针的基础上构建出的一个同样重要的概念。
指针对于任何一个编程语言而言都是必须且重要的,虽然 Python 对指针这一概念进行了刻意的模糊与限制,但指针对于 Python 而言依然是一个必须进行深入讨论的话题。
本文基于 C++ 与 Python,讨论了 Python 中与指针及引用相关的一些行为。
1 什么是指针?为什么需要指针?
指针有两重含义:
(1)指代某种数据类型的指针类型,如整形指针类型、指针指针类型
(2)指代一类存放有内存地址的变量,即指针变量
指针的这两重含义是紧密联系的:作为一种变量,通过指针可以获取某个内存地址,从而为访问此地址上的值做好了准备;作为一种类型,其决定了内存地址的正确偏移长度,其应等于当前类型的单位内存大小。
如果一个指针缺少指针类型,即 void *,则显然,其虽然保存了内存地址,但这仅仅是一个起点地址,指针会因为无法获知从起点向后进行的偏移量,从而拒绝解指针操作;而如果一个指针缺少地址,即 nullptr,则其根本无法读取特定位置的内存。
指针存在的意义主要有以下几点:
- 承载通过 malloc、new、allocator 等获取的动态内存
- 使得 pass-by-pointer 成为可能
- 避免对实参无意义的值拷贝,大幅提高效率
- 使得对某个变量的修改能力不局限于变量自身的作用域
- 使得 swap、移动构造函数、移动赋值运算等操作可以仅针对数据结构内部的指针进行操作,从而避免了对临时对象、移后源等对象的整体内存操作
2 C++中的引用
在 C++ 中,引用具有与指针相似的性质,但更加隐形与严格。C++ 的引用分为以下两种:
2.1 左值引用
左值引用于其初始化阶段绑定到左值,且不存在重新绑定。
左值引用具有与被绑定左值几乎一样的性质,其唯一的区别在于 decltype 声明:
int numA = 0, &lrefA = numA;
// Binding an lvalue
cout << ++lrefA << endl;
// Use the lvalue reference as lvalue & rvalue
decltype(lrefA) numB = 1;
// Error!
左值引用常用于 pass-by-reference:
void swap(int &numA, int &numB)
{
int tmpNum = numA;
numA = numB;
numB = tmpNum;
}int main()
{
int numA = 1, numB = 2;
swap(numA, numB);
cout << numA << endl << numB << endl;
// 2 1
}
2.2 右值引用
右值引用于其初始化阶段绑定到右值,其常用于移动构造函数和移动赋值操作。在这些场合中,移动构造函数和移动赋值操作通过右值引用接管被移动对象。
右值引用与本文内容无关,故这里不再详述。
3 Python中的引用
3.1 Python不存在引用
由上文讨论可知,虽然“引用”对于 Python 而言是一个非常常用的术语,但这显然是不准确的——由于 Python 不存在对左/右值的绑定操作,故不存在左值引用,更不存在右值引用。
3.2 Python的指针操作
不难发现,虽然 Python 没有引用,但其变量的行为和指针的行为具有高度的相似性,这主要体现在以下方面:
- 在任何情况下(包括赋值、实参传递等)均不存在显式值拷贝,当此种情况发生时,只增加了一次引用计数
- 变量可以进行重绑定(对应于一个不含顶层 const(top-level const)的指针)
- 在某些情况下(下文将对此问题进行详细讨论),可通过函数实参修改原值
3.2.1 构造函数返回指针
对于 Python 的描述,有一句非常常见的话:“一切皆对象”。
但在这句话中,有一个很重要的事实常常被人们忽略:对象是一个值,不是一个指针或引用。
所以,这句话的准确描述应该更正为:“一切皆(某种残缺的)指针”。虽然修改后的描述很抽象,但这是更准确的。
而由于对象从构造函数而来,至此我们可知:Python的构造函数将构造匿名对象,且返回此对象的一个指针。
这是 Python 与指针的第一个重要联系。
用代码描述,对于Python代码:
sampleNum = 0
其不类似于 C++ 代码:
int sampleNum = 0;
而更类似于:
int __tmpNum = 0, *sampleNum = &__tmpNum;
// 或者:
shared_ptr sampleNum(new int(0));
3.2.2 __setitems__操作将隐式解指针
Python与指针的另一个重要联系在于 Python 的隐式解指针行为。
虽然 Python 不存在显式解指针操作,但(有且仅有)__setitems__操作将进行隐式解指针,通过此方法对变量进行修改等同于通过解指针操作修改变量原值。
此种性质意味着:
- 任何不涉及__setitems__的操作都将成为指针重绑定。
numList = [None] * 10# Rebinding
numList = [None] * 5
其相当于:
int *numList = new int[10];
// Rebinding
delete[] numList;
numList = new int[5];
delete[] numList;
由此可见,对 numList 的非__setitems__操作,导致 numList 被绑定到了一个新指针上。
- 任何涉及__setitems__的操作都将成为解指针操作。
- 对数组的索引操作
- 对哈希表的查找操作
- 涉及__setattr__的操作(由于 Python 将 attribute 存储在哈希表中,所以__setattr__操作最终将是某种__setitems__操作)
对于以下Python代码:
class Complex(object):
def __init__(self, real = 0., imag = 0.):
self.real = real
self.imag = imagdef __repr__(self):
return '(%.2f, %.2f)' % (self.real, self.imag)def main():
complexObj = Complex(1., 2.)
complexObj.real += 1
complexObj.imag += 1
# (2.00, 3.00)
print(complexObj)if __name__ == '__main__':
main()
其相当于:
class Complex
{
public:
double real, imag;
Complex(double _real = 0., double _imag = 0.): real(_real), imag(_imag) {}
};
ostream &operator<<(ostream &os, const Complex &complexObj)
{
return os << "(" << complexObj.real << ", " << complexObj.imag << ")";
}int main()
{
Complex *complexObj = new Complex(1., 2.);
complexObj->real++;
complexObj->imag++;
cout << *complexObj << endl;
delete complexObj;
return 0;
}
由此可见,无论是 int、float 这种简单的 Python 类型,还是我们自定义的类,其构造行为都类似使用 new 构造对象并返回指针。
且在 Python 中任何涉及“.”和“[]”的操作,都类似于对指针的“->”或“*”解指针操作。
4 后记
本文探讨了 Python 变量与指针、引用两大概念之间的关系,主要论证了“Python不存在引用”以及“Python变量的行为类似于某种残缺的指针”两个论点。
【对比 C++ 和 Python,谈谈指针与引用】以上就是本次分享的所有内容,想要了解更多 python 知识欢迎前往公众号:Python 编程学习圈 ,发送 “J” 即可免费获取,每日干货分享
文章图片
推荐阅读
- python中几个常用函数
- python中几个常用小技巧
- Python私有变量与私有方法
- python随机生成中文字符的方法
- python|12 个要收藏的前端 CSS 网站
- 一个help函数解决了python的所有文档信息查看
- 智能算法|BP神经网络(原理及代码实现)
- 为什么 Python 3 把 print 改为函数()
- Python 高速增长的三次历史机遇