[英雄星球六月集训LeetCode解题日报] 第24日 线段树

@TOC
日报

  • 今天两题之前都做过,重新提交一遍。
  • 这两题我测试线段树和珂朵莉都可以过,珂朵莉快一点。
  • [[python刷题模板] 珂朵莉树 ODT](https://blog.csdn.net/liulian...)
  • [[python刷题模板] 线段树](https://blog.csdn.net/liulian...)
  • [[LeetCode解题报告] 699. 掉落的方块](https://blog.csdn.net/liulian...)
题目 一、731. 我的日程安排表 II
731. 我的日程安排表 II
1. 题目描述
  1. 我的日程安排表 II
难度:中等
【[英雄星球六月集训LeetCode解题日报] 第24日 线段树】实现一个 MyCalendar 类来存放你的日程安排。如果要添加的时间内不会导致三重预订时,则可以存储这个新的日程安排。
MyCalendar 有一个 book(int start, int end)方法。它意味着在 startend 时间内增加一个日程安排,注意,这里的时间是半开区间,即 [start, end), 实数 x 的范围为, start <= x < end
当三个日程安排有一些时间上的交叉时(例如三个日程安排都在同一时间内),就会产生三重预订。
每次调用 MyCalendar.book方法时,如果可以将日程安排成功添加到日历中而不会导致三重预订,返回 true。否则,返回 false 并且不要将该日程安排添加到日历中。
请按照以下步骤调用MyCalendar 类: MyCalendar cal = new MyCalendar(); MyCalendar.book(start, end)
示例:
MyCalendar(); MyCalendar.book(10, 20); // returns true MyCalendar.book(50, 60); // returns true MyCalendar.book(10, 40); // returns true MyCalendar.book(5, 15); // returns false MyCalendar.book(5, 10); // returns true MyCalendar.book(25, 55); // returns true 解释: 前两个日程安排可以添加至日历中。 第三个日程安排会导致双重预订,但可以添加至日历中。 第四个日程安排活动(5,15)不能添加至日历中,因为它会导致三重预订。 第五个日程安排(5,10)可以添加至日历中,因为它未使用已经双重预订的时间10。 第六个日程安排(25,55)可以添加至日历中,因为时间 [25,40] 将和第三个日程安排双重预订; 时间 [40,50] 将单独预订,时间 [50,55)将和第二个日程安排双重预订。

提示:
  • 每个测试用例,调用 MyCalendar.book 函数最多不超过 1000次。
  • 调用函数 MyCalendar.book(start, end)时, startend 的取值范围为 [0, 10^9]
2. 思路分析
  • 维护区间[l,r]时间区间上的预定数。
  • 发现当前区间最大值为2了,则这个区间再插入就是3.
  • 显然是线段树IUIQ的板子,区间更新就是要考虑Lazytag。
  • 发现数据范围10^9,那么考虑离线做离散化,发现强行禁止离线,只能在线做。
  • 那么找到动态开点线段树的板子,CV成功!
  • 这里说一下废话:为什么要用线段树或者珂朵莉而不能用数组模拟:因为数组模拟是 O(nm) 的,n是每次线段平均长度,这里最大是 10^9 。肯定过不了。
  • 而线段树可以把这个过程变成 O(mlgn)
3. 代码实现
class IntervalTree: def __init__(self): self.interval_tree = collections.defaultdict(int) self.lazys = collections.defaultdict(int)def give_lay_to_son(self,p,l,r): interval_tree = self.interval_tree lazys = self.lazys if lazys[p] == 0: return mid = (l+r)//2 interval_tree[p*2] += lazys[p] interval_tree[p*2+1] += lazys[p] lazys[p*2] += lazys[p] lazys[p*2+1] += lazys[p] lazys[p] = 0def add(self,p,l,r,x,y,val): """ 把[x,y]区域全+val """ if r < x or y < l:# 这里不加就会TLE return interval_tree = self.interval_tree lazys = self.lazys if x <= l and r<=y: interval_tree[p] += val lazys[p] += val return self.give_lay_to_son(p,l,r) mid = (l+r)//2 if x <= mid: self.add(p*2,l,mid,x,y,val) if mid < y: self.add(p*2+1,mid+1,r,x,y,val) interval_tree[p] = max(interval_tree[p*2], interval_tree[p*2+1])def query(self,p,l,r,x,y): """ 查找x,y区间的最大值 """ if y < l or r < x: return 0 if x<=l and r<=y: return self.interval_tree[p] self.give_lay_to_son(p,l,r) mid = (l+r)//2 s = 0 if x <= mid: s = max(s,self.query(p*2,l,mid,x,y)) if mid < y: s = max(s,self.query(p*2+1,mid+1,r,x,y)) return sclass MyCalendarTwo:def __init__(self): self.tree = IntervalTree()def book(self, start: int, end: int) -> bool: m = self.tree.query(1,1,10**9+1,start+1,end) if m >= 2: return Falseself.tree.add(1,1,10**9+1,start+1,end,1) return True

二、 699. 掉落的方块
链接: 699. 掉落的方块
1. 题目描述
  1. 掉落的方块
难度:困难
在二维平面上的 x 轴上,放置着一些方块。
给你一个二维整数数组 positions ,其中 positions[i] = [lefti, sideLengthi] 表示:第 i 个方块边长为 sideLengthi ,其左侧边与 x 轴上坐标点 lefti 对齐。
每个方块都从一个比目前所有的落地方块更高的高度掉落而下。方块沿 y 轴负方向下落,直到着陆到 另一个正方形的顶边 或者是 x 轴上 。一个方块仅仅是擦过另一个方块的左侧边或右侧边不算着陆。一旦着陆,它就会固定在原地,无法移动。
在每个方块掉落后,你必须记录目前所有已经落稳的 方块堆叠的最高高度 。
返回一个整数数组 ans ,其中 ans[i] 表示在第 i 块方块掉落后堆叠的最高高度。
示例 1:
[英雄星球六月集训LeetCode解题日报] 第24日 线段树
文章图片

输入:positions = [[1,2],[2,3],[6,1]] 输出:[2,5,5] 解释: 第 1 个方块掉落后,最高的堆叠由方块 1 组成,堆叠的最高高度为 2 。 第 2 个方块掉落后,最高的堆叠由方块 1 和 2 组成,堆叠的最高高度为 5 。 第 3 个方块掉落后,最高的堆叠仍然由方块 1 和 2 组成,堆叠的最高高度为 5 。 因此,返回 [2, 5, 5] 作为答案。

示例 2:
输入:positions = [[100,100],[200,100]] 输出:[100,100] 解释: 第 1 个方块掉落后,最高的堆叠由方块 1 组成,堆叠的最高高度为 100 。 第 2 个方块掉落后,最高的堆叠可以由方块 1 组成也可以由方块 2 组成,堆叠的最高高度为 100 。 因此,返回 [100, 100] 作为答案。 注意,方块 2 擦过方块 1 的右侧边,但不会算作在方块 1 上着陆。

提示:
  • 1 <= positions.length <= 1000
  • 1 <= lefti <= 108
  • 1 <= sideLengthi <= 106
2. 思路分析
  • 方块掉落时,显然高度取决于这个方块底边管辖内,当前最高的方块,本方块会落在上边。
  • 那我们需要的是一个快速查询区间极值,快速区间赋值的数据结构,显然线段树可以。
  • 这题范围较大,但是可以离线,那就离散化吧。
  • 这题有大量区间推平操作,可以珂朵莉。
  • 这里还是贴一个线段树,需要珂朵莉可以去我上边贴的地址看。
3. 代码实现
class IntervalTree: def __init__(self, size): self.size = size self.interval_tree = [0 for _ in range(size*4)] self.lazys = [0 for _ in range(size*4)]def give_lay_to_son(self,p,l,r): interval_tree = self.interval_tree lazys = self.lazys if lazys[p] == 0: return mid = (l+r)//2 interval_tree[p*2] = lazys[p] interval_tree[p*2+1] = lazys[p] lazys[p*2] = lazys[p] lazys[p*2+1] = lazys[p] lazys[p] = 0def update(self,p,l,r,x,y,val): """ 把[x,y]区域全变成val """ if y < l or r < x: return interval_tree = self.interval_tree lazys = self.lazys if x <= l and r<=y: interval_tree[p] = val lazys[p] = val return self.give_lay_to_son(p,l,r) mid = (l+r)//2 if x <= mid: self.update(p*2,l,mid,x,y,val) if mid < y: self.update(p*2+1,mid+1,r,x,y,val) interval_tree[p] = max(interval_tree[p*2], interval_tree[p*2+1])def query(self,p,l,r,x,y): """ 查找x,y区间的最大值"""if y < l or r < x: return 0 if x<=l and r<=y: return self.interval_tree[p] self.give_lay_to_son(p,l,r) mid = (l+r)//2 s = 0 if x <= mid: s = max(s,self.query(p*2,l,mid,x,y)) if mid < y: s = max(s,self.query(p*2+1,mid+1,r,x,y)) return sclass Solution: def fallingSquares(self, positions: List[List[int]]) -> List[int]: n = len(positions) hashes = [left for left,_ in positions] + [left+side for left,side in positions] hashes = sorted(list(set(hashes))) # 用线段树维护x轴区间最大值,记录每个点的高度:比如[1,2]这个方块,会使线段[1,2]闭区间这个线段上的每个高度都变成2 # 落下一个新方块时,查询它的底边所在线段[x,y]的最大高度h,这个方块会落在这个高度h,把新高度h+side插入线段树[x,y]的部分 # 每次插入结束,树根存的高度就是当前最大高度 # 由于数据范围大1 <= lefti <= 108,需要散列化 # 散列化的值有left和right(线段短点) # print(hashes) tree_size = len(hashes) tree = IntervalTree(tree_size) heights = [] for left,d in positions: right = left + d l = bisect_left(hashes,left) r = bisect_left(hashes,right) h = tree.query(1,1,tree_size,l+1,r) tree.update(1,1,tree_size,l+1,r,h+d) heights.append(tree.interval_tree[1]) return heights

人生苦短,我用Python!

    推荐阅读