C++动态规划计算最大子数组
目录
- 例题
- 1.求最大的子数组的和
- 2.求和最大的相应子数组
例题 题目:输入一个整形数组,数组里有正数也有负数。数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。求所有子数组的和的最大值。要求时间复杂度为O(n)。
例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5,和最大的子数组为3, 10, -4, 7, 2,因此输出为该子数组的和18。
1.求最大的子数组的和 代码【C++】
#includeusing namespace std; /// Find the greatest sum of all sub-arrays// Return value: if the input is valid, return true, otherwise return false/bool FindGreatestSumOfSubArray(int *pData,// an arrayunsigned int nLength, // the length of arrayint &nGreatestSum// the greatest sum of all sub-arrays){// if the input is invalid, return falseif((pData =https://www.it610.com/article/= NULL) || (nLength == 0))return false; int nCurSum = nGreatestSum = 0; for(unsigned int i = 0; i < nLength; ++i){nCurSum += pData[i]; // if the current sum is negative, discard itif(nCurSum < 0)nCurSum = 0; // if a greater sum is found, update the greatest sumif(nCurSum> nGreatestSum)nGreatestSum = nCurSum; }// if all data are negative, find the greatest element in the arrayif(nGreatestSum == 0){nGreatestSum = pData[0]; for(unsigned int i = 1; i < nLength; ++i){if(pData[i] > nGreatestSum)nGreatestSum = pData[i]; }}return true; }int main(){int arr[] = {1, -2, 3, 10, -4, 7, 2, -5}; int iGreatestSum; FindGreatestSumOfSubArray(arr, sizeof(arr)/sizeof(int), iGreatestSum); cout << iGreatestSum << endl; return 0; }
结果
文章图片
2.求和最大的相应子数组 代码【C++】
#includeusing namespace std; /// Find the greatest sum of all sub-arrays// Return value: if the input is valid, return true, otherwise return false/bool FindGreatestSumOfSubArray(int *pData,// an arrayunsigned int nLength, // the length of arrayint &nGreatestSum,// the greatest sum of all sub-arraysint &start,// Addedint &end// Added){// if the input is invalid, return falseif((pData =https://www.it610.com/article/= NULL) || (nLength == 0))return false; int nCurSum = nGreatestSum = 0; int curStart = 0, curEnd = 0; // Addedstart = end = 0; // Addedfor(unsigned int i = 0; i < nLength; ++i){nCurSum += pData[i]; curEnd = i; // Added// if the current sum is negative, discard itif(nCurSum < 0){nCurSum = 0; curStart = curEnd = i + 1; // Added}// if a greater sum is found, update the greatest sumif(nCurSum> nGreatestSum){nGreatestSum = nCurSum; start = curStart; // Addedend = curEnd; // Added}}// if all data are negative, find the greatest element in the arrayif(nGreatestSum == 0){nGreatestSum = pData[0]; start = end = 0; // Addedfor(unsigned int i = 1; i < nLength; ++i){if(pData[i] > nGreatestSum){nGreatestSum = pData[i]; start = end = i; // Added}}}return true; }int main(){int arr[] = {1, -2, 3, 10, -4, 7, 2, -5}; int iGreatestSum, start, end; FindGreatestSumOfSubArray(arr, sizeof(arr)/sizeof(int), iGreatestSum, start, end); cout << iGreatestSum << ": "; for(int i = start; i <= end; i++){cout << arr[i] << " "; }return 0; }
结果
【C++动态规划计算最大子数组】
文章图片
到此这篇关于C++动态规划计算最大子数组的文章就介绍到这了,更多相关C++最大子数组内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
推荐阅读
- C++动态规划算法实现矩阵链乘法
- 我的服务器开发之路|面向对象使用的轻量化高并发Linux c++网络库kikilib
- Jetson|Jetson Nano下载C++ 版本的GPIO 并配置进qt项目
- Serverless|Serverless 在阿里云函数计算中的实践
- 计算机语言|C#中using关键字的作用
- 产业互联网|始于云计算,DPU创业如何完善新的生态?| 快公司
- 新手计算机学习路线
- C++编程学习指导|C++初阶(初识模板和泛型编程)
- C++|C++模板笔记一(泛型编程思想;函数模板;类型参数化;类型推导)
- 计算机|全新升级的AOP框架Dora.Interception[5]: 实现任意的拦截器注册方式