redis所有的数据都在内存中,而内存又是非常宝贵的资源。常用的内存优化方案有如下几部分:
1、配置优化
2、缩减键值对象
3、命令处理
4、缓存淘汰方案
一、配置优化
1、linux配置优化
内存分配
vm.overcommit_memory
Redis是内存操作,需要优先使用内存。设置overcommit 为1。是为了让 fork 操作能够在低内存下也执行成功。Linux 操作系统对大部分申请内存的请 求都回复 yes,以便能运行更多的程序。因为申请内存后,并不会马上使用内存,这种技术叫做 overcommit。 vm.overcommit_memory 用来设置内存 分配策略,有三个可选值
THP
Redis 在启动时可能会看到如下日志:
Redis 建议修改 Transparent Huge Pages(THP)的相关配置,Linux kernel 在2.6.38内核增加了 THP 特性,支持大内存页(2MB)分配,默认开启。当开启 时可以降低 fork 子进程的速度,但 fork 操作之后,每个内存页从原来 4KB 变为 2MB,会大幅增加重写期间父进程内存消耗。同时每次写命令引起的复制内 存页单位放大了512倍,会拖慢写操作的执行时间,导致大量写操作慢查询,例如简单的 incr 命令也会出现在慢查询中。因此 Redis 日志中建议将此特性进 行禁用,禁用方法如下:
echo never > /sys/kernel/mm/transparent_hugepage/enabled
为使机器重启后THP配置依然生效,可以在/etc/rc.local 中追加 echo never>/sys/kernel/mm/transparent_hugepage/enabled
swappiness
swap 对于操作系统来比较重要,当物理内存不足时,可以将一部分内存页进行 swap 操作,已解燃眉之急。swap 空间由硬盘提供,对于需要高并发、 高吞吐的应用来说,磁盘 IO 通常会成为系统瓶颈。在 Linux 中,并不是要等到所有物理内存都使用完才会使用到 swap,系统参数 swppiness 会决定操 作系统使用 swap 的倾向程度。swappiness 的取值范围是0~100,swappiness 的值越大,说明操作系统可能使用swap的概率越高,swappiness 值越 低,表示操作系统更加倾向于使用物理内存。swap 的默认值是60,了解这个值的含义后,有利于 Redis 的性能优化。下表对 swappiness 的重要值进行了说明。
OOM(Out Of Memory)killer 机制是指 Linux 操作系统发现可用内存不足时,强制杀死一些用户进程(非内核进程),来保证系统有足够的可用内存 进行分配。 为使配置在重启 Linux 操作系统后立即生效,只需要在/etc/sysctl.conf 追加 vm.swappiness={bestvalue}即可 echo vm.swappiness={bestvalue} >> /etc/sysctl.conf
查看 swap 的总体情况 free-m 如下服务器开启了8189M swap,其中使用了 5241MB
ulimit设置
可以通过 ulimit 查看和设置系统当前用户进程的资源数。其中 ulimit-a 命令包含的 open files 参数,是单个用户同时打开的最大文件个数
Redis 允许同时有多个客户端通过网络进行连接,可以通过配置 maxclients 来限制最大客户端连接数。对 Linux 操作系统来说,这些网络连接都是文件 句柄。假设当前 open files 是4096,那么启动 Redis 时会看到如下日志:
#You requested maxclients of 10000 requiring at least 10032 max file descriptors.
#Redis can’t set maximum open files to 10032 because of OS error: Operation not permitted.
#Current maximum open files is 4096. Maxclients has been reduced to 4064 to compensate for low ulimit. If you need higher maxclients increase ‘ulimit –n’ .
解释如下:
第一行:Redis 建议把 open files 至少设置成10032,那么这个10032是如何来的呢?因为 maxclients 默认是10000,这些是用来处理客户端连接的,除此 之外,Redis 内部会使用最多32个文件描述符,所以这里的10032=10000+32。
第二行:Redis 不能将 open files 设置成10032,因为它没有权限设置。
第三行:当前系统的 open files 是4096,所以将 maxclients 设置成4096-32=4064个,如果你想设置更高的 maxclients,请使用 ulimit-n 来设置。
从上面的三行日志分析可以看出 open files 的限制优先级比 maxclients 大。 Open files 的设置方法如下:
ulimit –Sn {max-open-files}
2、Redis配置优化
设置maxmemory。设置Redis使用的最大物理内存,即Redis在占用maxmemory大小的内存之后就开始拒绝后续的写入请求,该参数可以确保Redis因为使用 了大量内存严重影响速度或者发生OOM(out-of-memory,发现内存不足时,它会选择杀死一些进程(用户态进程,不是内核线程),以便释放内存)。此外, 可以使用info命令查看Redis占用的内存及其它信息。
让键名保持简短。键的长度越长,Redis需要存储的数据也就越多
客户端timeout 设置一个超时时间,防止无用的连接占用资源。设置如下命令:
timeout 150
tcp-keepalive 150 (定时向client发送tcp_ack包来探测client是否存活的。默认不探测)
检查数据持久化策略 数据落磁盘尽可能减少性能损坏,以空间换时间。设置如下命令:
rdbcompression no : 默认值是yes。对于存储到磁盘中的快照,可以设置是否进行压缩存储。如果是的话,redis会采用LZF算法进行压缩。如果你不想 消耗CPU来进行压缩的话,可以设置为关闭此功能,但是存储在磁盘上的快照会比较大。
rdbchecksum no : 默认值是yes。在存储快照后,我们还可以让redis使用CRC64算法来进行数据校验,但是这样做会增加大约10%的性能消耗,如果希 望获取到最大的性能提升,可以关闭此功能。
优化AOF和RDB,减少占用CPU时间 主库可以不进行dump操作或者降低dump频率。 取消AOF持久化。命令如下: appendonly no
监控客户端的连接
因为Redis是单线程模型(只能使用单核),来处理所有客户端的请求, 但由于客户端连接数的增长,处理请求的线程资源开始降低分配给单个客户端连接 的处理时间
限制客户端连接数 。在Redis-cli工具中输入info clients可以查看到当前实例的所有客户端连接信息
maxclients属性上修改客户端连接的最大数,可以通过在Redis-cli工具上输入 config set maxclients 去设置最大连接数。根据连接数负载的情况
二、缩减键值对象
降低Redis内存使用最直接的方式就是缩减键(key)和值(value)的长度。
key长度:如在设计键时,在完整描述业务情况下,键值越短越好。
value长度:值对象缩减比较复杂,常见需求是把业务对象序列化成二进制数组放入Redis。首先应该在业务上精简业务对象,在存到Redis之前先把你的数据 压缩下。
三. 命令处理
Redis基于C/S架构模式,基于Redis操作命令是解决响应延迟问题最关键的部分,因为Redis是个单线程模型,客户端过来的命令是按照顺序执行的。比较常见的 延迟是带宽,通过千兆网卡的延迟大约有200μs。倘若明显看到命令的响应时间变慢,延迟高于200μs,那可能是Redis命令队列里等待处理的命令数量比较多
要分析解决这个性能问题,需要跟踪命令处理数的数量和延迟时间。
比如可以写个脚本,定期记录total_commands_processed的值。当客户端明显发现响应时间过慢时,可以通过记录的total_commands_processed历史数据值来判 断命理处理总数是上升趋势还是下降趋势,以便排查问题 在info信息里的 total_commands_processed字段显示了Redis服务处理命令的总数
解决方案:
1.使用多参数命令:若是客户端在很短的时间内发送大量的命令过来,会发现响应时间明显变慢,这由于后面命令一直在等待队列中前面大量命令执行完毕。有 个方法可以改善延迟问题,就是通过单命令多参数的形式取代多命令单参数的形式。
举例来说 循环使用LSET命令去添加1000个元素到list结构中,是性能比较差的一种方式,更好的做法是在客户端创建一个1000元素的列表,用单个命令LPUSH或 RPUSH,通过多参数构造形式一次性把1000个元素发送的Redis服务上。下面是Redis的一些操作命令,有单个参数命令和支持多个参数的命令,通过这些命令可 尽量减少使用多命令的次数。
2.管道命令:另一个减少多命令的方法是使用管道(pipeline),把几个命令合并一起执行,从而减少因网络开销引起的延迟问题。因为10个命令单独发送到服务端 会引起10次网络延迟开销,使用管道会一次性把执行结果返回,仅需要一次网络延迟开销。Redis本身支持管道命令,大多数客户端也支持,倘若当前实例延迟 很明显,那么使用管道去降低延迟是非常有效的
【html5|Redis优化及配置】
四、缓存淘汰优化
redis 内存数据集大小上升到一定大小的时候,就会进行数据淘汰策略。如果不淘汰经常不用的缓存数据,那么正常的数据将不会存储到缓存当中。
我们通过配置redis.conf中的maxmemory这个值来开启内存淘汰功能。
maxmemory
值得注意的是,maxmemory为0的时候表示我们对Redis的内存使用没有限制
根据应用场景,选择淘汰策略
maxmemory-policy noeviction
内存淘汰的过程
首先,客户端发起了需要申请更多内存的命令(如set)。
然后,Redis检查内存使用情况,如果已使用的内存大于maxmemory则开始根据用户配置的不同淘汰策略来淘汰内存(key),从而换取一定的内存。
最后,如果上面都没问题,则这个命令执行成功。
动态改配置命令
此外,redis支持动态改配置,无需重启。
设置最大内存
config set maxmemory 100000
设置淘汰策略
config set maxmemory-policy noeviction
内存淘汰策略
volatile-lru
从已设置过期时间的数据集(server .db[i].expires)中挑选最近最少使用的数据淘汰。
allkeys-lru
从数据集(server .db[i].dict)中挑选最近最少使用的数据淘汰
volatile-lfu
从设置了过期时间的数据集(server .db[i].expires)中选择某段时间之内使用频次最小的键值对清除掉
allkeys-lfu
从所有的数据集(server .db[i].dict)中选择某段时间之内使用频次最少的键值对清除
volatile-ttl
从已设置过期时间的数据集(server .db[i].expires)中挑选将要过期的数据淘汰
volatile-random
从已设置过期时间的数据集(server .db[i].expires)中任意选择数据淘汰
allkeys-random
从数据集(server .db[i].dict)中任意选择数据淘汰
no-enviction
当内存达到限制的时候,不淘汰任何数据,不可写入任何数据集,所有引起申请内存的命令会报错。
算法文章:(https://blog.csdn.net/ZYZMZM_/article/details/90546812)
如何选择淘汰策略
下面看看几种策略的适用场景
allkeys-lru :如果我们的应用对缓存的访问符合幂律分布,也就是存在相对热点数据,或者我们不太清楚我们应用的缓存访问分布状况,我们可以选择 allkeys-lru策略。
allkeys-random :如果我们的应用对于缓存key的访问概率相等,则可以使用这个策略。
volatile-ttl:这种策略使得我们可以向Redis提示哪些key更适合被eviction。
另外,volatile-lru策略和volatile-random策略适合我们将一个Redis实例既应用于缓存和又应用于持久化存储的时候,然而我们也可以通过使用两个Redis实例来达 到相同的效果,值得一提的是将key设置过期时间实际上会消耗更多的内存,因此我们建议使用allkeys-lru策略从而更有效率的使用内存
推荐阅读
- Redis|Redis6.0 新功能
- SpringCloud|SpringCloud Alibaba【微服务组件Feign&Nacos配置中心使用】
- 【米哈游2023届秋招】开启【校招唯一专属内推码EYTUC】
- 计算机毕业设计springboot延安市图书馆管理
- java|JAVA中几种常用JSON库性能比较
- sso单点登录
- 大公司为什么禁止SpringBoot项目使用Tomcat()
- intellij-idea|解决MAC下应用程序“IntelliJ IDEA”无法打开(JetBrains全家桶同理)
- 效率|JetBrains IntelliJ IDEA 优化教程