基于Python实现配置热加载的方法详解
目录
- 背景
- 如何实现
- 使用多进程实现配置热加载
- 使用signal信号量来实现热加载
- 采用multiprocessing.Event 来实现配置热加载
- 结语
背景 由于最近工作需求,需要在已有项目添加一个新功能,实现配置热加载的功能。所谓的配置热加载,也就是说当服务收到配置更新消息之后,我们不用重启服务就可以使用最新的配置去执行任务。
如何实现 下面我分别采用多进程、多线程、协程的方式去实现配置热加载。
使用多进程实现配置热加载 如果我们代码实现上使用多进程, 主进程1来更新配置并发送指令,任务的调用是进程2,如何实现配置热加载呢?
【基于Python实现配置热加载的方法详解】
使用signal信号量来实现热加载
文章图片
当主进程收到配置更新的消息之后(配置读取是如何收到配置更新的消息的? 这里我们暂不讨论), 主进程就向进子程1发送kill信号,子进程1收到kill的信号就退出,之后由信号处理函数来启动一个新的进程,使用最新的配置文件来继续执行任务。
main 函数
def main():# 启动一个进程执行任务p1 = Process(target=run, args=("p1",))p1.start()monitor(p1, run) # 注册信号processes["case100"] = p1 #将进程pid保存num = 0 while True: # 模拟获取配置更新print(f"{multiprocessing.active_children()=}, count={len(multiprocessing.active_children())}\n")print(f"{processes=}\n")sleep(2)if num == 4:kill_process(processes["case100"]) # kill 当前进程if num == 8:kill_process(processes["case100"]) # kill 当前进程if num == 12:kill_process(processes["case100"]) # kill 当前进程num += 1
signal_handler 函数
def signal_handler(process: Process, func, signum, frame):# print(f"{signum=}")global countsif signum == 17:# 17 is SIGCHILD # 这个循环是为了忽略SIGTERM发出的信号,避免抢占了主进程发出的SIGCHILDfor signame in [SIGTERM, SIGCHLD, SIGQUIT]:signal.signal(signame, SIG_DFL)print("Launch a new process")p = multiprocessing.Process(target=func, args=(f"p{counts}",))p.start()monitor(p, run)processes["case100"] = pcounts += 1if signum == 2:if process.is_alive():print(f"Kill {process} process")process.terminate()signal.signal(SIGCHLD, SIG_IGN)sys.exit("kill parent process")
完整代码如下
#! /usr/local/bin/python3.8from multiprocessing import Processfrom typing import Dictimport signalfrom signal import SIGCHLD, SIGTERM, SIGINT, SIGQUIT, SIG_DFL, SIG_IGNimport multiprocessingfrom multiprocessing import Processfrom typing import Callablefrom data import processesimport sysfrom functools import partialimport timeprocesses: Dict[str, Process] = {}counts = 2def run(process: Process):while True:print(f"{process} running...")time.sleep(1)def kill_process(process: Process):print(f"kill {process}")process.terminate()def monitor(process: Process, func: Callable):for signame in [SIGTERM, SIGCHLD, SIGINT, SIGQUIT]:# SIGTERM is kill signal.# No SIGCHILD is not trigger singnal_handler,# No SIGINT is not handler ctrl+c,# No SIGQUIT is RuntimeError: reentrant call inside <_io.BufferedWriter name=''>signal.signal(signame, partial(signal_handler, process, func))def signal_handler(process: Process, func, signum, frame):print(f"{signum=}")global countsif signum == 17:# 17 is SIGTERMfor signame in [SIGTERM, SIGCHLD, SIGQUIT]:signal.signal(signame, SIG_DFL)print("Launch a new process")p = multiprocessing.Process(target=func, args=(f"p{counts}",))p.start()monitor(p, run)processes["case100"] = pcounts += 1if signum == 2:if process.is_alive():print(f"Kill {process} process")process.terminate()signal.signal(SIGCHLD, SIG_IGN)sys.exit("kill parent process")def main():p1 = Process(target=run, args=("p1",))p1.start()monitor(p1, run)processes["case100"] = p1num = 0while True:print(f"{multiprocessing.active_children()=}, count={len(multiprocessing.active_children())}\n")print(f"{processes=}\n")time.sleep(2)if num == 4:kill_process(processes["case100"])if num == 8:kill_process(processes["case100"])if num == 12:kill_process(processes["case100"])num += 1if __name__ == '__main__':main()
执行结果如下
multiprocessing.active_children()=[], count=1processes={'case100': }p1 running...p1 running...kill multiprocessing.active_children()=[], count=1processes={'case100': }signum=17Launch a new processp2 running...p2 running...multiprocessing.active_children()=[], count=1processes={'case100': }p2 running...p2 running...multiprocessing.active_children()=[], count=1processes={'case100': }p2 running...p2 running...multiprocessing.active_children()=[], count=1processes={'case100': }p2 running...p2 running...kill signum=17Launch a new processmultiprocessing.active_children()=[], count=1processes={'case100': }p3 running...p3 running...multiprocessing.active_children()=[], count=1
总结
好处:使用信号量可以处理多进程之间通信的问题。
坏处:代码不好写,写出来代码不好理解。信号量使用必须要很熟悉,不然很容易自己给自己写了一个bug.(所有初学者慎用,老司机除外。)
还有一点不是特别理解的就是
process.terminate()
发送出信号是SIGTERM
number是15,但是第一次signal_handler
收到信号却是number=17,如果我要去处理15的信号,就会导致前一个进程不能kill掉的问题。欢迎有对信号量比较熟悉的大佬,前来指点迷津,不甚感谢。采用multiprocessing.Event 来实现配置热加载
实现逻辑是主进程1 更新配置并发送指令。进程2启动调度任务。
这时候当主进程1更新好配置之后,发送指令给进程2,这时候的指令就是用Event一个异步事件通知。
直接上代码
scheduler 函数
def scheduler():while True:print('wait message...')case_configurations = scheduler_notify_queue.get()print(f"Got case configurations {case_configurations=}...")task_schedule_event.set() # 设置set之后, is_set 为Trueprint(f"Schedule will start ...")while task_schedule_event.is_set(): # is_set 为True的话,那么任务就会一直执行run(case_configurations)print("Clearing all scheduling job ...")
event_scheduler 函数
def event_scheduler(case_config):scheduler_notify_queue.put(case_config)print(f"Put cases config to the Queue ...")task_schedule_event.clear() # clear之后,is_set 为Falseprint(f"Clear scheduler jobs ...")print(f"Schedule job ...")
完整代码如下
import multiprocessingimport timescheduler_notify_queue = multiprocessing.Queue()task_schedule_event = multiprocessing.Event()def run(case_configurations: str):print(f'{case_configurations} running...')time.sleep(3)def scheduler():while True:print('wait message...')case_configurations = scheduler_notify_queue.get()print(f"Got case configurations {case_configurations=}...")task_schedule_event.set()print(f"Schedule will start ...")while task_schedule_event.is_set():run(case_configurations)print("Clearing all scheduling job ...")def event_scheduler(case_config: str):scheduler_notify_queue.put(case_config)print(f"Put cases config to the Queue ...")task_schedule_event.clear()print(f"Clear scheduler jobs ...")print(f"Schedule job ...")def main():scheduler_notify_queue.put('1')p = multiprocessing.Process(target=scheduler)p.start()count = 1print(f'{count=}')while True:if count == 5:event_scheduler('100')if count == 10:event_scheduler('200')count += 1time.sleep(1)if __name__ == '__main__':main()
执行结果如下
wait message...Got case configurations case_configurations='1'...Schedule will start ...1 running...1 running...Put cases config to the Queue ...Clear scheduler jobs ...Schedule job ...Clearing all scheduling job ...wait message...Got case configurations case_configurations='100'...Schedule will start ...100 running...Put cases config to the Queue ...Clear scheduler jobs ...Schedule job ...Clearing all scheduling job ...wait message...Got case configurations case_configurations='200'...Schedule will start ...200 running...200 running...
总结
使用Event事件通知,代码不易出错,代码编写少,易读。相比之前信号量的方法,推荐大家多使用这种方式。
使用多线程或协程的方式,其实和上述实现方式一致。唯一区别就是调用了不同库中,
queue
和 event
.# threadingscheduler_notify_queue = queue.Queue()task_schedule_event = threading.Event()# asyncscheduler_notify_queue = asyncio.Queue()task_schedule_event = asyncio.Event()
结语 具体的实现的方式有很多,也各自有各自的优劣势。我们需要去深刻理解到需求本身,才去做技术选型。
以上就是基于Python实现配置热加载的方法详解的详细内容,更多关于Python配置热加载的资料请关注脚本之家其它相关文章!
推荐阅读
- pytest使用@pytest.mark.parametrize()实现参数化的示例代码
- #|Python基础——魔法方法与异常处理
- python3魔法方法_python(类3——魔法方法)
- 零基础入门学python|Python基础——类和对象
- python入门——魔法方法
- #|Python基础——类和对象与魔法方法
- python中魔法方法
- python|python课程——魔法方法
- 基于图结构的计算分析和实现
- Python处理mysql特殊字符的问题