Spark|Spark Streaming 数据接收优化

看这篇文章前,请先移步Spark Streaming 数据产生与导入相关的内存分析, 文章重点讲的是从Kafka消费到数据进入BlockManager的这条线路的分析。
【Spark|Spark Streaming 数据接收优化】这篇内容是个人的一些经验,大家用的时候还是建议好好理解内部的原理,不可照搬
让Receiver均匀的分布到你的Executor上 在Spark Streaming 数据产生与导入相关的内存分析中我说了这么一句话:

我发现在数据量很大的情况下,最容易挂掉的就是Receiver所在的Executor了。 建议Spark Streaming团队最好是能将数据写入到多个BlockManager上。
从现在的API来看,是没有提供这种途径的。但是Spark Streaming 提供了同时读多个topic的功能,每个topic是一个InputStream。 我们可以复用这个功能,具体代码如下:
val kafkaDStreams = (1 to kafkaDStreamsNum).map { _ => KafkaUtils.createStream( ssc, zookeeper, groupId, Map("your topic" -> 1), if (memoryOnly) StorageLevel.MEMORY_ONLY else StorageLevel.MEMORY_AND_DISK_SER_2)} val unionDStream = ssc.union(kafkaDStreams) unionDStream

kafkaDStreamsNum 是你自己定义的,希望有多少个Executor 启动Receiver 去接收kafka数据。我的经验值是 1/4 个Executors 数目。因为数据还要做replication 一般,所以这样内存最大可以占到 1/2 的storage.
另外,务必给你系统设置 spark.streaming.receiver.maxRate。假设你启动了 N个 Receiver,那么你系统实际会接受到的数据不会超过 N*MaxRate,也就是说,maxRate参数是针对每个 Receiver 设置的。
减少非Storage 内存的占用 也就是我们尽量让数据都占用Spark 的Storage 内存。方法是把spark.streaming.blockInterval 调小点。当然也会造成一个副作用,就是input-block 会多。每个Receiver 产生的的input-block数为: batchInterval* 1000/blockInterval。 这里假设你的batchInterval 是以秒为单位的。 blockInterval 其实我也不知道会有啥影响。其实说白了,就是为了防止GC的压力。实时计算有一个很大问题是GC。
减少单个Executor的内存 一般在Spark Streaming中不建议把 Executor 的内存调的太大。对GC是个压力,大内存一FullGC比较可怕,很可能会拖垮整个计算。 多Executor的容错性也会更好些。

    推荐阅读