基于Keras搭建LSTM网络实现文本情感分类
- 一、语料概况
-
- 1.1 数据统计
-
- 1.1.1 查看样本均衡情况,对label进行统计
- 1.1.2 计句子长度及长度出现的频数
- 1.1.3 绘制句子长度累积分布函数(CDF)
- 二、LSTM模型构建与评估
-
- 2.1 数据导入预处理
-
- 2.1.1 获取标签和字符字典列表
- 2.1.2 将文本和类别编码
- 2.2 构建LSTM模型
- 2.3 划分数据集-LSTM模型训练-验证
- 2.4 模型实际应用
- 2.5 完整代码
版本
在jupyter notbook中执行
import keras as ks
import tensorflow as tfprint(ks.__version__)
print(tf.__version__)
2.3.1一、语料概况 本次项目主要以电商网站下的用户评论数据作为实验数据集,数据集已经做好了标注。其中该数据集一共有4310条评论数据,文本的情感分为两类:“正面”和“反面”
2.0.0
其中evaluation为评论内容,label为情感倾向。
文章图片
1.1 数据统计 先整体查看不同类别下的样本均衡情况,样本的不均衡会影响模型的分类效果
导入相应的库
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import font_manager
from itertools import accumulateplt.rcParams['font.sans-serif']=['SimHei'] #图中文字体设置为黑体
1.1.1 查看样本均衡情况,对label进行统计
df = pd.read_csv('./data_single.csv')
print(df.groupby('label')['label'].count())
label
正面1908
负面2375
Name: label, dtype: int64
整体来看样本还算均衡,正面1908条,负面2375条。可以达到需求了
深度学习中需要定义文本的最长长度,大于该长度就需要将文本切割,不够就填充0处理,所以还是需要整体统计出样本大致的文本长度分布。、
1.1.2 计句子长度及长度出现的频数
先计算句子的长度,在对句子的长度进行分组统计分析,看下不同长度下一共有几个样本
df[:30]
df[:30].groupby('length').count()
可以看出长度15的有两个,length是句子长度,evaluation代表该长度下有几个样本,根据这两个值就可以画图了
文章图片
文章图片
df['length'] = df['evaluation'].apply(lambda x: len(x))len_df = df.groupby('length').count()
sent_length = len_df.index.tolist()
sent_freq = len_df['evaluation'].tolist()
获取数据中样本的所有长度sent_length,和该长度下sent_freq的样本数量绘图
# 绘制句子长度及出现频数统计图
plt.figure(figsize=(10,12))
plt.bar(sent_length, sent_freq,2)
plt.title("句子长度及出现频数统计图", )
plt.xlabel("句子长度")
plt.ylabel("句子长度出现的频数")
plt.savefig("./句子长度及出现频数统计图.png")
plt.show
大部分长度在20左右。
文章图片
1.1.3 绘制句子长度累积分布函数(CDF)
到句子累加到90%的时候,返回其对应长度值
### 绘制句子长度累积分布函数(CDF)
sent_pentage_list = [(count/sum(sent_freq)) for count in accumulate(sent_freq)]
plt.figure(figsize=(10,12))# 绘制CDF
plt.plot(sent_length, sent_pentage_list)# 寻找分位点为quantile的句子长度
quantile = 0.90for length, per in zip(sent_length, sent_pentage_list):
if round(per, 2) == quantile:
index = length
break
print("\n分位点为%s的句子长度:%d." % (quantile, index))# 绘制句子长度累积分布函数图plt.plot(sent_length, sent_pentage_list,linewidth=4)
plt.hlines(quantile, 0, index, colors="c", linestyles="dashed",linewidth=4)
plt.vlines(index, 0, quantile, colors="c", linestyles="dashed",linewidth=4)
plt.text(0, quantile, str(quantile),fontsize=10)
plt.text(index, 0, str(index))
plt.title("句子长度累积分布函数图",fontsize=20)
plt.xlabel("句子长度",fontsize=15)
plt.ylabel("句子长度累积频率",fontsize=15)
plt.savefig("./句子长度累积分布函数图.png")
plt.show
分位点为0.9的句子长度:172.大多数样本的句子长度集中在1-200之间,句子长度累计频率取0.90分位点,则长度为172左右。
文章图片
二、LSTM模型构建与评估 LSTM模型架构
文章图片
导库
import pickle
import numpy as np
import pandas as pd
from keras.utils import np_utils, plot_model
from keras.models import Sequential
from keras.preprocessing.sequence import pad_sequences
from keras.layers import LSTM, Dense, Embedding, Dropoutfrom sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
2.1 数据导入预处理
filepath = 'data_single.csv' #数据
input_shape = 180#设置长度
model_save_path = 'corpus_model.h5' #模型保存位置df = pd.read_csv(filepath)
df.head()
2.1.1 获取标签和字符字典列表
文章图片
取出标签,和数据;再去重。
# 标签及词汇表
labels, vocabulary = list(df['label'].unique()), list(df['evaluation'].unique())
labels
[‘正面’, ‘负面’]
vocabulary
[‘用了一段时间,感觉还不错,可以’,构建每个字符,去重后的集合。
‘电视非常好,已经是家里的第二台了。第一天下单,第二天就到本地了,可是物流的人说车坏了,一直催,客服也帮着催,到第三天下午5点才送过来。父母年纪大了,买个大电视画面清晰,趁着耳朵还好使,享受几年。’,
‘电视比想象中的大好多,画面也很清晰,系统很智能,更多功能还在摸索中’,
‘不错’,
‘用了这么多天了,感觉还不错。夏普的牌子还是比较可靠。希望以后比较耐用,现在是考量质量的时候。’,
‘物流速度很快,非常棒,今天就看了电视,非常清晰,非常流畅,一次非常完美的购物体验’,
‘非常好,客服还特意打电话做回访’,
‘物流小哥不错,辛苦了,东西还没用’,
‘送货速度快,质量有保障,活动价格挺好的。希望用的久,不出问题。’,
‘非常漂亮,也非常清晰,反应速度也快。’,
‘很不错家里都喜欢。。。一次买了三台’,
‘送货非常快!质量非常好,这次购物非常愉快!!’,
‘58好大……都不错。看质量咯’,
‘物流很快,物有所值,值得信赖。依旧会关顾!谢谢商家!’,
‘这价钱超值,收到货马上装上看了一下。很清晰式样也蛮好!赞赞……’,
# 构造字符级别的特征
string = ''
for word in vocabulary:
#print(word)
string += wordvocabulary = set(string)
print(vocabulary)
print(len(vocabulary))
一共有2154个词,2个类别
文章图片
2154
对每个字符都进行编码
word_dictionary = {word: i+1 for i, word in enumerate(vocabulary)}
word_dictionary
文章图片
获取反转的字符编码
inverse_word_dictionary = {i+1: word for i, word in enumerate(vocabulary)}
inverse_word_dictionary
设置词汇表大小,标签类别数量
文章图片
vocab_size = len(word_dictionary.keys()) # 词汇表大小
label_size = len(label_dictionary.keys()) # 标签类别数量
2.1.2 将文本和类别编码
将文本按照字典进行编码
x = [[word_dictionary[word] for word in sent] for sent in df['evaluation']]
x
编码后,还需要切割填充,网络对于每一个样本数据的特征长度要求都是一致的
文章图片
x = pad_sequences(maxlen=input_shape, sequences=x, padding='post', value=https://www.it610.com/article/0)
x
array([[1460, 325, 641, …, 0, 0, 0],类别需要编码成0,1的one_hot编码
[1902, 2024, 905, …, 0, 0, 0],
[1902, 2024, 2023, …, 0, 0, 0],
…,
[ 641, 703, 868, …, 0, 0, 0],
[ 633, 1902, 2024, …, 0, 0, 0],
[ 641, 1233, 1233, …, 0, 0, 0]])
y = [[label_dictionary[sent]] for sent in df['label']]
y
[[0],转为one_hot编码
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
y = [np_utils.to_categorical(label, num_classes=label_size) for label in y]
y
array([[1., 0.]], dtype=float32),转为标准化的输入
array([[1., 0.]], dtype=float32),
array([[1., 0.]], dtype=float32),
array([[1., 0.]], dtype=float32),
array([[1., 0.]], dtype=float32),
array([[1., 0.]], dtype=float32),
array([[1., 0.]], dtype=float32),
array([[1., 0.]], dtype=float32),
array([[1., 0.]], dtype=float32),
array([[1., 0.]], dtype=float32),
array([[1., 0.]], dtype=float32),
array([[1., 0.]], dtype=float32),
array([[1., 0.]], dtype=float32),
y = np.array([list(_[0]) for _ in y])
y
array([[1., 0.],封装成函数,将字典保存下来
[1., 0.],
[1., 0.],
…,
[0., 1.],
[0., 1.],
[0., 1.]], dtype=float32)
设置默认shape为20
# 导入数据
# 文件的数据中,特征为evaluation, 类别为label.
def load_data(filepath, input_shape=20):
df = pd.read_csv(filepath)# 标签及词汇表
labels, vocabulary = list(df['label'].unique()), list(df['evaluation'].unique())# 构造字符级别的特征
string = ''
for word in vocabulary:
string += wordvocabulary = set(string)# 字典列表
word_dictionary = {word: i+1 for i, word in enumerate(vocabulary)}
with open('word_dict.pk', 'wb') as f:
pickle.dump(word_dictionary, f)
inverse_word_dictionary = {i+1: word for i, word in enumerate(vocabulary)}
label_dictionary = {label: i for i, label in enumerate(labels)}
with open('label_dict.pk', 'wb') as f:
pickle.dump(label_dictionary, f)
output_dictionary = {i: labels for i, labels in enumerate(labels)}vocab_size = len(word_dictionary.keys()) # 词汇表大小
label_size = len(label_dictionary.keys()) # 标签类别数量# 序列填充,按input_shape填充,长度不足的按0补充
x = [[word_dictionary[word] for word in sent] for sent in df['evaluation']]
x = pad_sequences(maxlen=input_shape, sequences=x, padding='post', value=https://www.it610.com/article/0)
y = [[label_dictionary[sent]] for sent in df['label']]
y = [np_utils.to_categorical(label, num_classes=label_size) for label in y]
y = np.array([list(_[0]) for _ in y])return x, y, output_dictionary, vocab_size, label_size, inverse_word_dictionary
2.2 构建LSTM模型
文章图片
可以看到中间的cell里面有四个黄色小框,你如果理解了那个代表的含义一切就明白了,每一个小黄框代表一个前馈网络层,对,就是经典的神经网络的结构,num_units就是这个层的隐藏神经元个数,就这么简单。其中1,2,4的激活函数是sigmoid,第三个的激活函数是tanh。
文章图片
假设units = 64
根据上图,我们可以计算,假设a向量是128维向量,x向量是28维向量,那么二者concat以后就是156维向量,为了能相乘,那么Wf就应该是(64,156),同理其余三个框,也应该是同样的shape。于是,在第一层就有参数64x156x4 + 64x4个。
若是把cell外面的参数也算进去,那么假设有10个类,那么对于最终的shape为(64,1)的输出at,还要有一个shape为(10,64)的W跟一个shape为(10,1)的b。
# 模型输入参数,需要自己根据需要调整
n_units = 100 #LSTM神经元数量
batch_size = 32 #每次迭代数据量,一般为2的次方
epochs = 5#训练批次
output_dim = 20 #输出维度model = Sequential()
model.add(Embedding(input_dim=vocab_size + 1, output_dim=output_dim,
input_length=input_shape, mask_zero=True))
model.add(LSTM(n_units, input_shape=(x.shape[0], x.shape[1])))
model.add(Dropout(0.2))
model.add(Dense(label_size, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])# plot_model(model, to_file='./model_lstm.png', show_shapes=True)
model.summary()
【实战|基于Keras搭建LSTM网络实现文本情感分类】模型架构:
Model: "sequential_8"
_________________________________________________________________
Layer (type)Output ShapeParam #
=================================================================
embedding_7 (Embedding)(None, 180, 20)43100
_________________________________________________________________
lstm_7 (LSTM)(None, 100)48400
_________________________________________________________________
dropout_1 (Dropout)(None, 100)0
_________________________________________________________________
dense_7 (Dense)(None, 2)202
=================================================================
Total params: 91,702
Trainable params: 91,702
Non-trainable params: 0
_________________________________________________________________
函数封装
# 创建深度学习模型, Embedding + LSTM + Softmax.
def create_LSTM(n_units, input_shape, output_dim, filepath):
x, y, output_dictionary, vocab_size, label_size, inverse_word_dictionary = load_data(filepath)
model = Sequential()
model.add(Embedding(input_dim=vocab_size + 1, output_dim=output_dim,
input_length=input_shape, mask_zero=True))
model.add(LSTM(n_units, input_shape=(x.shape[0], x.shape[1])))
#model.add(Dropout(0.2))
model.add(Dense(label_size, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])#plot_model(model, to_file='./model_lstm.png', show_shapes=True)
model.summary()return model
2.3 划分数据集-LSTM模型训练-验证 用sk-learn划分数据集,9:1的比例
x, y, output_dictionary, vocab_size, label_size, inverse_word_dictionary = load_data(filepath, input_shape)
train_x, test_x, train_y, test_y = train_test_split(x, y, test_size = 0.1, random_state = 42)# 模型输入参数,需要自己根据需要调整
n_units = 100
batch_size = 32
epochs = 5
output_dim = 20# 模型训练
lstm_model = create_LSTM(n_units, input_shape, output_dim, filepath)
lstm_model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size, verbose=1)# 模型保存
lstm_model.save(model_save_path)
Model: "sequential_9"
_________________________________________________________________
Layer (type)Output ShapeParam #
=================================================================
embedding_8 (Embedding)(None, 180, 20)43100
_________________________________________________________________
lstm_8 (LSTM)(None, 100)48400
_________________________________________________________________
dense_8 (Dense)(None, 2)202
=================================================================
Total params: 91,702
Trainable params: 91,702
Non-trainable params: 0
_________________________________________________________________
D:\Anaconda3\envs\tf3\lib\site-packages\tensorflow_core\python\framework\indexed_slices.py:424: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
Epoch 1/5
3854/3854 [==============================] - 15s 4ms/step - loss: 0.4679 - accuracy: 0.7706
Epoch 2/5
3854/3854 [==============================] - 14s 4ms/step - loss: 0.2244 - accuracy: 0.9266
Epoch 3/5
3854/3854 [==============================] - 14s 4ms/step - loss: 0.1719 - accuracy: 0.9463
Epoch 4/5
3854/3854 [==============================] - 14s 4ms/step - loss: 0.1406 - accuracy: 0.9595
Epoch 5/5
3854/3854 [==============================] - 15s 4ms/step - loss: 0.1274 - accuracy: 0.9606
测试数据
N = test_x.shape[0]# 测试的条数
predict = []
label = []
for start, end in zip(range(0, N, 1), range(1, N+1, 1)):
sentence = [inverse_word_dictionary[i] for i in test_x[start] if i != 0]
y_predict = lstm_model.predict(test_x[start:end])
label_predict = output_dictionary[np.argmax(y_predict[0])]
label_true = output_dictionary[np.argmax(test_y[start:end])]
print(''.join(sentence), label_true, label_predict) # 输出预测结果
predict.append(label_predict)
label.append(label_true)acc = accuracy_score(predict, label) # 预测准确率
print('模型在测试集上的准确率为: %s.' % acc)
给家里老人买的,很不错哦,价格实惠 正面 正面函数封装
给父母买的,特意用了一段时间再来评价,电视非常好,没有坏点和损坏,界面也很简洁,便于操作,稍微不足就是开机会比普通电视慢一些,这应该是智能电视的通病吧,如果可以希望微鲸大大可以更新系统优化下开机时间~电视真的很棒,性价比爆棚,值得大家考虑购买。 客服很细心,快递小哥很耐心的等我通电验货,态度非常好。 负面 正面
长须鲸和海狮回答都很及时,虽然物流不够快但是服务不错电视不错,对比了乐视小米和微鲸论性价比还是微鲸好点 负面 负面
所以看不到4k效果,但是应该可以。 自带音响,中规中矩吧,好像没有别人说的好。而且,到现在没连接上我的漫步者,这个非常不满意,因为看到网上说好像普通3.5mm的连不上或者连上了声音小。希望厂家接下来开发的电视有改进。不知道我要不要换个音响。其他的用用再说。 放在地上的是跟我混了两年的tcl,天气受潮,修了一次,下岗了。 最后,我也觉得底座不算太稳,凑合着用。 负面 负面
电视机一般,低端机不要求那么高咯。 负面 负面
很好,两点下单上午就到了,服务很好。 正面 正面
帮朋友买的,好好好好好好好好 正面 正面
模型在测试集上的准确率为: 0.9254079254079254.
# 模型训练
def model_train(input_shape, filepath, model_save_path):# 将数据集分为训练集和测试集,占比为9:1
# input_shape = 100
x, y, output_dictionary, vocab_size, label_size, inverse_word_dictionary = load_data(filepath, input_shape)
train_x, test_x, train_y, test_y = train_test_split(x, y, test_size = 0.1, random_state = 42)# 模型输入参数,需要自己根据需要调整
n_units = 100
batch_size = 32
epochs = 5
output_dim = 20# 模型训练
lstm_model = create_LSTM(n_units, input_shape, output_dim, filepath)
lstm_model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size, verbose=1)# 模型保存
lstm_model.save(model_save_path)N = test_x.shape[0]# 测试的条数
predict = []
label = []
for start, end in zip(range(0, N, 1), range(1, N+1, 1)):
sentence = [inverse_word_dictionary[i] for i in test_x[start] if i != 0]
y_predict = lstm_model.predict(test_x[start:end])
label_predict = output_dictionary[np.argmax(y_predict[0])]
label_true = output_dictionary[np.argmax(test_y[start:end])]
print(''.join(sentence), label_true, label_predict) # 输出预测结果
predict.append(label_predict)
label.append(label_true)acc = accuracy_score(predict, label) # 预测准确率
print('模型在测试集上的准确率为: %s.' % acc)
2.4 模型实际应用 在模型实际应用的时候,需要导入对应的字符和标签字典,转为相应的编码。
# Import the necessary modules
import pickle
import numpy as np
from keras.models import load_model
from keras.preprocessing.sequence import pad_sequences
# 导入字典
with open('word_dict.pk', 'rb') as f:
word_dictionary = pickle.load(f)
with open('label_dict.pk', 'rb') as f:
output_dictionary = pickle.load(f)
try:
# 数据预处理
input_shape = 180
sent = "很满意,电视非常好。护眼模式,很好,也很清晰。"
x = [[word_dictionary[word] for word in sent]]
print('--------x转为编码--------')
x = pad_sequences(maxlen=input_shape, sequences=x, padding='post', value=https://www.it610.com/article/0)
print('--------x填充完成--------')# 载入模型
model_save_path = './corpus_model.h5'
lstm_model = load_model(model_save_path)
# 模型预测
y_predict = lstm_model.predict(x)
label_dict = {v: k for k, v in output_dictionary.items()}
print('输入语句: %s' % sent)
print('情感预测结果: %s' % label_dict[np.argmax(y_predict)])
except KeyError as err:
print("您输入的句子有汉字不在词汇表中,请重新输入!")
print("不在词汇表中的单词为:%s." % err)
--------x转为编码--------2.5 完整代码 统计出数据集中的情感分布以及评论句子长度分布
--------x填充完成--------
输入语句: 很满意,电视非常好。护眼模式,很好,也很清晰。
情感预测结果: 正面
data_print.py
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import font_manager
from itertools import accumulate
#设置matplotlib绘图时的字体
my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simfang.ttf')
#统计句子长度及出现次数的频数
df = pd.read_csv('./data_single.csv')
print(df.groupby('label')['label'].count())
df['length'] = df['evaluation'].apply(lambda x: len(x))
# print(df)
len_df = df.groupby('length').count()
sent_length = len_df.index.tolist()
sent_freq = len_df['evaluation'].tolist()
#绘制句子长度及出现频数统计图
plt.bar(sent_length, sent_freq)
plt.title("句子长度及出现频数统计图", fontproperties=my_font)
plt.xlabel("句子长度", fontproperties=my_font)
plt.ylabel("句子长度出现的频数", fontproperties=my_font)
plt.savefig("./句子长度及出现频数统计图.png")
plt.close()
#绘制句子长度累计分布函数(CDF)
sent_pentage_list = [(count / sum(sent_freq)) for count in accumulate(sent_freq)]
# 绘制CDF
plt.plot(sent_length, sent_pentage_list)
#寻找分位点为quantile的句子长度
quantile = 0.91
# print(list(sent_pentage_list))
for length, per in zip(sent_length, sent_pentage_list):
if round(per, 2) == quantile:
index = length
break
print('\n分位点为%s的句子长度:%d' % (quantile, index))
# 绘制句子长度累积分布函数图
plt.plot(sent_length, sent_pentage_list)
plt.hlines(quantile, 0, index, colors="c", linestyles="dashed")
plt.vlines(index, 0, quantile, colors="c", linestyles="dashed")
plt.text(0, quantile, str(quantile))
plt.text(index, 0, str(index))
plt.title("句子长度累积分布函数图", fontproperties=my_font)
plt.xlabel("句子长度", fontproperties=my_font)
plt.ylabel("句子长度累积频率", fontproperties=my_font)
plt.savefig("./句子长度累积分布函数图.png")
plt.close()
import pickle
import numpy as np
import pandas as pd
from keras.utils import np_utils, plot_model
from keras.models import Sequential
from keras.preprocessing.sequence import pad_sequences
from keras.layers import LSTM, Dense, Embedding, Dropout
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 导入数据
# 文件的数据中,特征为evaluation, 类别为label.
def load_data(filepath, input_shape=20):
df = pd.read_csv(filepath)
# 标签及词汇表
labels, vocabulary = list(df['label'].unique()), list(df['evaluation'].unique())
# print(len(labels))
# print(len(vocabulary))
# 构造字符级别的特征
string = ''
for word in vocabulary:
string += word
# print(string)
vocabulary = set(string)
# print(vocabulary)
# 字典列表
word_dictionary = {word: i + 1 for i, word in enumerate(vocabulary)}
with open('word_dict.pk', 'wb') as f:
pickle.dump(word_dictionary, f)
inverse_word_dictionary = {i + 1: word for i, word in enumerate(vocabulary)}
label_dictionary = {label: i for i, label in enumerate(labels)}
with open('label_dict.pk', 'wb') as f:
pickle.dump(label_dictionary, f)
output_dictionary = {i: labels for i, labels in enumerate(labels)}
vocab_size = len(word_dictionary.keys())# 词汇表大小
label_size = len(label_dictionary.keys())# 标签类别数量
# print(vocab_size, labels)
# 序列填充,按input_shape填充,长度不足的按0补充
x = [[word_dictionary[word] for word in sent] for sent in df['evaluation']]
x = pad_sequences(maxlen=input_shape, sequences=x, padding='post', value=https://www.it610.com/article/0)
y = [[label_dictionary[sent]] for sent in df['label']]
y = [np_utils.to_categorical(label, num_classes=label_size) for label in y]
y = np.array([list(_[0]) for _ in y])
return x, y, output_dictionary, vocab_size, label_size, inverse_word_dictionary
# 创建深度学习模型, Embedding + LSTM + Softmax.
def create_LSTM(n_units, input_shape, output_dim, filepath):
x, y, output_dictionary, vocab_size, label_size, inverse_word_dictionary = load_data(filepath)
model = Sequential()
model.add(Embedding(input_dim=vocab_size + 1, output_dim=output_dim,
input_length=input_shape, mask_zero=True))
model.add(LSTM(n_units, input_shape=(x.shape[0], x.shape[1])))
model.add(Dropout(0.2))
model.add(Dense(label_size, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
plot_model(model, to_file='./model_lstm.png', show_shapes=True)
model.summary()
return model
# 模型训练
def model_train(input_shape, filepath, model_save_path):
# 将数据集分为训练集和测试集,占比为9:1
# input_shape = 100
x, y, output_dictionary, vocab_size, label_size, inverse_word_dictionary = load_data(filepath, input_shape)
train_x, test_x, train_y, test_y = train_test_split(x, y, test_size=0.1, random_state=42)
# 模型输入参数,需要自己根据需要调整
n_units = 100
batch_size = 32
epochs = 5
output_dim = 20
# 模型训练
lstm_model = create_LSTM(n_units, input_shape, output_dim, filepath)
lstm_model.fit(train_x, train_y, epochs=epochs, batch_size=batch_size, verbose=1)
# 模型保存
lstm_model.save(model_save_path)
N = test_x.shape[0]# 测试的条数
predict = []
label = []
for start, end in zip(range(0, N, 1), range(1, N + 1, 1)):
sentence = [inverse_word_dictionary[i] for i in test_x[start] if i != 0]
y_predict = lstm_model.predict(test_x[start:end])
label_predict = output_dictionary[np.argmax(y_predict[0])]
label_true = output_dictionary[np.argmax(test_y[start:end])]
print(''.join(sentence), label_true, label_predict)# 输出预测结果
predict.append(label_predict)
label.append(label_true)
acc = accuracy_score(predict, label)# 预测准确率
print('模型在测试集上的准确率为: %s.' % acc)
if __name__ == '__main__':
filepath = './data_single.csv'
input_shape = 180
# load_data(filepath, input_shape)
model_save_path = './corpus_model.h5'
model_train(input_shape, filepath, model_save_path)
模型预测代码
# Import the necessary modules
import pickle
import numpy as np
from keras.models import load_model
from keras.preprocessing.sequence import pad_sequences
# 导入字典
with open('word_dict.pk', 'rb') as f:
word_dictionary = pickle.load(f)
with open('label_dict.pk', 'rb') as f:
output_dictionary = pickle.load(f)
try:
# 数据预处理
input_shape = 180
sent = "很满意,电视非常好。护眼模式,很好,也很清晰。"
x = [[word_dictionary[word] for word in sent]]
x = pad_sequences(maxlen=input_shape, sequences=x, padding='post', value=https://www.it610.com/article/0)
# 载入模型
model_save_path ='./corpus_model.h5'
lstm_model = load_model(model_save_path)
# 模型预测
y_predict = lstm_model.predict(x)
label_dict = {v: k for k, v in output_dictionary.items()}
print('输入语句: %s' % sent)
print('情感预测结果: %s' % label_dict[np.argmax(y_predict)])
except KeyError as err:
print("您输入的句子有汉字不在词汇表中,请重新输入!")
print("不在词汇表中的单词为:%s." % err)
推荐阅读
- 自然语言处理|人工智能框架实战精讲(Keras项目-英文语料的文本分类实战与调参优化)
- 深度学习|一文看尽 6篇 CVPR2021 2D 异常检测论文
- 论文|论文分享-- >异常检测-- >Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection
- 深度学习|超大规模的产业实用语义分割数据集PSSL与预训练模型开源啦!
- 深度学习|人工神经网络
- Pytorch学习笔记|Pytorch框架学习记录4——数据集的使用(torchvision.dataset)
- pytorch|PyTorch 框架学习 更新中...
- 机器学习之python学习|时间序列框架-Darts-用户指南(中)
- 深度学习|Pytorch实践