一、键值设计
1、key名设计
可读性和可管理性
以业务名(或数据库名)为前缀(防止key冲突),用冒号分隔,比如业务名:表名:id
ugc:video:1
简洁性
保证语义的前提下,控制key的长度,当key较多时,内存占用也不容忽视,例如:
user:{uid}:friends:messages:{mid}简化为u:{uid}:fr:m:{mid}。
不要包含特殊字符
反例:包含空格、换行、单双引号以及其他转义字符
2、value设计
拒绝bigkey
防止网卡流量、慢查询,string类型控制在10KB以内,hash、list、set、zset元素个数不要超过5000。
反例:一个包含200万个元素的list。
非字符串的bigkey,不要使用del删除,使用hscan、sscan、zscan方式渐进式删除,同时要注意防止bigkey过期时间自动删除问题(例如一个200万的zset设置1小时过期,会触发del操作,造成阻塞,而且该操作不会不出现在慢查询中(latency可查)),查找方法和删除方法
选择适合的数据类型
例如:实体类型(要合理控制和使用数据结构内存编码优化配置,例如ziplist,但也要注意节省内存和性能之间的平衡)
反例:
set user:1:name tomset user:1:age 19set user:1:favor football
正例:
hmset user:1 name tom age 19 favor football
控制key的生命周期
redis不是垃圾桶,建议使用expire设置过期时间(条件允许可以打散过期时间,防止集中过期),不过期的数据重点关注idletime。
二、命令使用
1、O(N)命令关注N的数量
例如hgetall、lrange、smembers、zrange、sinter等并非不能使用,但是需要明确N的值。有遍历的需求可以使用hscan、sscan、zscan代替。
2、禁用命令
禁止线上使用keys、flushall、flushdb等,通过redis的rename机制禁掉命令,或者使用scan的方式渐进式处理。
3、合理使用select
redis的多数据库较弱,使用数字进行区分,很多客户端支持较差,同时多业务用多数据库实际还是单线程处理,会有干扰。
4、使用批量操作提高效率
- 原生命令:例如mget、mset。
- 非原生命令:可以使用pipeline提高效率。
注意两者不同:
- 原生是原子操作,pipeline是非原子操作。
- pipeline可以打包不同的命令,原生做不到
- pipeline需要客户端和服务端同时支持。
Redis的事务功能较弱(不支持回滚),而且集群版本(自研和官方)要求一次事务操作的key必须在一个slot上(可以使用hashtag功能解决)
6、Redis集群版本在使用Lua上有特殊要求
1、所有key都应该由 KEYS 数组来传递,redis.call/pcall 里面调用的redis命令,key的位置,必须是KEYS array, 否则直接返回error,"-ERR bad lua script for redis cluster, all the keys that the script uses should be passed using the KEYS arrayrn"
2、所有key,必须在1个slot上,否则直接返回error, "-ERR eval/evalsha command keys must in same slotrn"
7、monitor命令
必要情况下使用monitor命令时,要注意不要长时间使用。
三、客户端使用
1、避免多个应用使用一个Redis实例
不相干的业务拆分,公共数据做服务化。
2、使用连接池
可以有效控制连接,同时提高效率,标准使用方式:
执行命令如下:
Jedis jedis = null;
try {
jedis = jedisPool.getResource();
//具体的命令
jedis.executeCommand()
} catch (Exception e) {
logger.error("op key {} error: " + e.getMessage(), key, e);
} finally {
//注意这里不是关闭连接,在JedisPool模式下,Jedis会被归还给资源池。
if (jedis != null)
jedis.close();
}
3、熔断功能
高并发下建议客户端添加熔断功能(例如netflix hystrix)
4、合理的加密
设置合理的密码,如有必要可以使用SSL加密访问(阿里云Redis支持)
5、淘汰策略
根据自身业务类型,选好maxmemory-policy(最大内存淘汰策略),设置好过期时间。
默认策略是volatile-lru,即超过最大内存后,在过期键中使用lru算法进行key的剔除,保证不过期数据不被删除,但是可能会出现OOM问题。
其他策略如下:
- allkeys-lru:根据LRU算法删除键,不管数据有没有设置超时属性,直到腾出足够空间为止。
- allkeys-random:随机删除所有键,直到腾出足够空间为止。
- volatile-random:随机删除过期键,直到腾出足够空间为止。
- volatile-ttl:根据键值对象的ttl属性,删除最近将要过期数据。如果没有,回退到noeviction策略。
- noeviction:不会剔除任何数据,拒绝所有写入操作并返回客户端错误信息"(error) OOM command not allowed when used memory",此时Redis只响应读操作。
1、数据同步
redis间数据同步可以使用:redis-port
2、big key搜索
redis大key搜索工具
3、热点key寻找
内部实现使用monitor,所以建议短时间使用facebook的redis-faina 阿里云Redis已经在内核层面解决热点key问题
五、删除bigkey
- 下面操作可以使用pipeline加速。
- redis 4.0已经支持key的异步删除,欢迎使用。
public void delBigHash(String host, int port, String password, String bigHashKey) {
Jedis jedis = new Jedis(host, port);
if (password != null && !"".equals(password)) {
jedis.auth(password);
}
ScanParams scanParams = new ScanParams().count(100);
String cursor = "0";
do {
ScanResult scanResult = jedis.hscan(bigHashKey, cursor, scanParams);
List entryList = scanResult.getResult();
if (entryList != null && !entryList.isEmpty()) {
for (Entry entry : entryList) {
jedis.hdel(bigHashKey, entry.getKey());
}
}
cursor = scanResult.getStringCursor();
} while (!"0".equals(cursor));
//删除bigkey
jedis.del(bigHashKey);
}
2、List删除: ltrim
public void delBigList(String host, int port, String password, String bigListKey) {
Jedis jedis = new Jedis(host, port);
if (password != null && !"".equals(password)) {
jedis.auth(password);
}
long llen = jedis.llen(bigListKey);
int counter = 0;
int left = 100;
while (counter < llen) {
//每次从左侧截掉100个
jedis.ltrim(bigListKey, left, llen);
counter += left;
}
//最终删除key
jedis.del(bigListKey);
}
3、Set删除: sscan + srem
public void delBigSet(String host, int port, String password, String bigSetKey) {
Jedis jedis = new Jedis(host, port);
if (password != null && !"".equals(password)) {
jedis.auth(password);
}
ScanParams scanParams = new ScanParams().count(100);
String cursor = "0";
do {
ScanResult scanResult = jedis.sscan(bigSetKey, cursor, scanParams);
List memberList = scanResult.getResult();
if (memberList != null && !memberList.isEmpty()) {
for (String member : memberList) {
jedis.srem(bigSetKey, member);
}
}
cursor = scanResult.getStringCursor();
} while (!"0".equals(cursor));
//删除bigkey
jedis.del(bigSetKey);
}
4、SortedSet删除: zscan + zrem
public void delBigZset(String host, int port, String password, String bigZsetKey) {
Jedis jedis = new Jedis(host, port);
if (password != null && !"".equals(password)) {
jedis.auth(password);
}
ScanParams scanParams = new ScanParams().count(100);
String cursor = "0";
do {
ScanResult scanResult = jedis.zscan(bigZsetKey, cursor, scanParams);
List tupleList = scanResult.getResult();
if (tupleList != null && !tupleList.isEmpty()) {
for (Tuple tuple : tupleList) {
jedis.zrem(bigZsetKey, tuple.getElement());
}
}
cursor = scanResult.getStringCursor();
} while (!"0".equals(cursor));
//删除bigkey
jedis.del(bigZsetKey);
}
【阿里官方 Redis 开发规范】来源:yq.aliyun.com/articles/531067
推荐阅读
- spingboot|springboot+vue+elementUI 疫情防控期间某村外出务工人员信息管理系统#毕业设计
- 开源推荐|开源表单系统推荐(TDUCK填鸭表单)
- SpringBoot|计算机毕业设计及论文-原创(基于SpringBoot的奥运村服务管理平台的设计与实现)
- vue+springboot|基于vue+springboot的校园疫情健康打卡和离校审批系统的设计 (百度地图API对接)
- 身为程序员的我们如何卷死别人(破局重生。)
- java|若依框架使用数据权限
- 笔记|如何在若依中做数据权限
- Java|ruoyi使用AOP控制数据权限案例
- Spring|若依-数据权限管理-DataScope