粒子滤波 PF(Particle filter)算法

原文链接
粒子滤波器方法通常用于视觉跟踪。从统计角度来看,它是一种顺序蒙特卡罗重要抽样方法,用于根据观测序列估计动态系统的潜状态变量。
粒子滤波步骤:

  1. 初始状态:用大量粒子模拟X(t),粒子在空间内均匀分布;
  2. 预测阶段:根据状态转移方程,每一个粒子得到一个预测粒子;
  3. 校正阶段:对预测粒子进行评价,越接近于真实状态的粒子,其权重越大;
  4. 重采样:根据粒子权重对粒子进行筛选,筛选过程中,既要大量保留权重大的粒子,又要有一小部分权重小的粒子;
  5. 滤波:将重采样后的粒子带入状态转移方程得到新的预测粒子,即步骤2。


学习更多编程知识,请关注我的公众号:
代码的路
【粒子滤波 PF(Particle filter)算法】粒子滤波 PF(Particle filter)算法
文章图片

    推荐阅读