文章图片
文章目录
- 1 随机椒盐噪声
- 2 高斯噪声
- 3 均值滤波器
- 4 中值滤波器
1 随机椒盐噪声 椒噪声:灰度值为0的噪声点,黑噪声
盐噪声:灰度值为255的噪声点,白噪声
思路:获取图像长、宽、通道数,在每个通道矩阵中随机产生灰度值为0和255的像素。
def salt_and_pepper_noise(image,percentage):
rows,columns,channels = image.shape#获取图片的长、宽、通道数
nums = int(rows*columns*percentage)#每个通道噪声数量
for channel in range(channels):
for num in range(nums):
row = random.randint(0,rows-1)#随机行号
column = random.randint(0,columns-1)#随机列号
if random.randint(0,1) == 0:
image[row,column,channel] = 0#椒噪声
else:
image[row,column,channel] = 255#盐噪声
return imageif __name__ == '__main__':
image = cv2.imread('./1.jpg')# 读取图片
a = salt_and_pepper_noise(image,percentage=0.1)
cv2.imshow('img',a)
cv2.waitKey(0)
2 高斯噪声 【图像处理|空间滤波-随机椒盐噪声-高斯噪声-均值滤波器-中值滤波器】思路:产生高斯分布噪声与原图像进行叠加,并控制数值空间为0至255。
def guassian_Noise(image,mean,sigma):#sigma方差
tempt = np.array(image/255,dtype = float)
noise = np.random.normal(mean,sigma, image.shape)
tempt += noise
tempt = np.clip(tempt, 0, 1)
tempt = np.uint8(tempt * 255)
return temptif __name__ == '__main__':
image = cv2.imread('./1.jpg')# 读取图片
b = guassian_Noise(image,0,1)
cv2.imshow('img', b)
cv2.waitKey(0)
3 均值滤波器 思路:输入一个 n ? n n*n n?n各个元素为1的矩阵作为滤波器核,然后将原图像进行边缘填充,按步长为1的跨度从左到右,从上到下,对填充图片上的 n ? n n*n n?n局域矩阵依次进行点乘,并将点乘后局域矩阵的各个元素值加在一起除以 n 2 n^2 n2,这个值为滤波后图像的一个像素值,全部滤波后就会获得滤波图像,彩色图像是三通道,因此需要对三个通道依次滤波。
左边随机椒盐噪声,右边均值滤波9*9
左边高斯噪声,右边均值滤波9*9
def means_filter(image,filter_size):
input_image = np.copy(image)
kernal = np.ones((filter_size,filter_size))# 卷积核
padding_num = int((filter_size - 1)/2)#需要补0
b,g,r = cv2.split(input_image)#分开三通道
b = np.pad(b, (padding_num, padding_num), mode='constant', constant_values=0)#图像三通道边缘填充
g = np.pad(g, (padding_num, padding_num), mode='constant', constant_values=0)
r = np.pad(r, (padding_num, padding_num), mode='constant', constant_values=0)
input_image = cv2.merge([b,g,r])#合并三通道
wide,height,channels = input_image.shape
output_image = np.copy(input_image)
for channel in range(channels):#均值滤波
for i in range(padding_num,wide-padding_num):
for j in range(padding_num,height-padding_num):
output_image[i,j,channel] = np.sum(\
kernal * input_image[i-padding_num:i+padding_num+1,j-padding_num:j+padding_num+1,channel])/(filter_size**2)
output_image = output_image[padding_num:wide - padding_num, padding_num:height - padding_num]# 裁剪return output_imageif __name__ == '__main__':
c = means_filter(image,9)
imgs = np.hstack([image,c])
cv2.imshow('img', imgs)
cv2.waitKey(0)
4 中值滤波器 思路:输入一个 n ? n n*n n?n各个元素为1的矩阵作为滤波器核,然后将原图像进行边缘填充,按步长为1的跨度从左到右,从上到下,对填充图片上的 n ? n n*n n?n局域矩阵依次进行中值排序,并这个中值为滤波后图像的一个像素值,全部滤波后就会获得滤波图像,彩色图像是三通道,因此需要对三个通道依次滤波。
左边随机椒盐噪声,右边中值滤波9*9
左边高斯噪声,右边中值滤波9*9
def median_filter(image,filter_size):
input_image = np.copy(image)
kernal = np.ones((filter_size,filter_size))# 卷积核
padding_num = int((filter_size - 1)/2)#需要补0
b,g,r = cv2.split(input_image)#分开三通道
b = np.pad(b, (padding_num, padding_num), mode='constant', constant_values=0)#图像三通道边缘填充
g = np.pad(g, (padding_num, padding_num), mode='constant', constant_values=0)
r = np.pad(r, (padding_num, padding_num), mode='constant', constant_values=0)
input_image = cv2.merge([b,g,r])#合并三通道
wide,height,channels = input_image.shape
output_image = np.copy(input_image)
for channel in range(channels):#中值滤波
for i in range(padding_num,wide-padding_num):
for j in range(padding_num,height-padding_num):
output_image[i,j,channel] = np.median(input_image[i-padding_num:i+padding_num+1,j-padding_num:j+padding_num+1,channel])
output_image = output_image[padding_num:wide - padding_num, padding_num:height - padding_num]# 裁剪return output_imageif __name__ == '__main__':
image = cv2.imread('./2.png')# 读取图片
d = median_filter(image,9)
imgs = np.hstack([image,d])
cv2.imshow('img', imgs)
cv2.waitKey(0)
/2.png')# 读取图片
d = median_filter(image,9)
imgs = np.hstack([image,d])
cv2.imshow('img', imgs)
cv2.waitKey(0)
推荐阅读
- chrome|2022软件测试技巧 Chrome 谷歌浏览器 开发者工具(F12) 快速调试xpath代码
- Selenium|【Selenium】控制当前已经打开的 chrome浏览器窗口(高级版)
- 数据库|使用 Apache Superset 可视化 ClickHouse 数据
- BigData|[大数据学习之ClickHouse]14-ClickHouse监控/可视化
- 后端|【python】Jenkins实现携带commit_log钉钉/企微机器人通知
- python|numpy,pandas学习笔记
- Python|【Python 实战基础】Pandas如何将数据处理后保存csv文件
- OpenCV|OpenCV-图像处理(18、Laplance算子)
- Python全栈基础教程|31.Python面向对象(四)【str和repr原理、魔法方法__call__和__new__方法、单例模式】