环境要求pytorch
基于pytorch深度学习框架,利用数据集CIFAR-10,在网络lenet5上进行 训练。
文章图片
在torch中datasets可直接加载,所以不用单独下载。
Step1:在pycharm中写入lenet5main.py 写入如下代码,用来下载数据集
#cifar10数据集+LeNet10网络实现训练import torch
#DataLoader可加载多个
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transformsdef datadownload():
batchsz=32
#一次加载一张
cifar_train=datasets.CIFAR10('cifar',True,transform=transforms.Compose([
transforms.Resize((32,32)),
transforms.ToTensor()
]),download=True)
cifar_train=DataLoader(cifar_train,batch_size=batchsz,shuffle=True)cifar_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor()
]), download = True)
cifar_test = DataLoader(cifar_test, batch_size=batchsz, shuffle=True)#测试数据
#利用iter进行迭代,打印出shape
x,label=iter(cifar_train).next()
print('x:',x.shape,'label:',label.shape)if __name__ == '__main__':
datadownload()
下载后
文章图片
Step2:创建lenet5.py 主要是卷积网络lenet5的网络结构
#cifar10数据集+LeNet5网络训练
import torch
from torch import nn
from torch.nn import functional as Fclass Lenet5(nn.Module):
def __init__(self):
super(Lenet5, self).__init__()
#输入二维图像,先经过俩层卷积层到池化层,再经过全连接层,最后使用softmax分类作为输出层
self.conv_unit=nn.Sequential(
#x输入图像统一归一化为32*32输出是6
nn.Conv2d(3,6,kernel_size=5,stride=1,padding=0),
nn.AvgPool2d(kernel_size=2,stride=2,padding=0),nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0),
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),)
#隐藏层
#第6层全连接层
self.fc_unit=nn.Sequential(
nn.Linear(16*5*5,120),
nn.ReLU(),
nn.Linear(120,84),
nn.ReLU(),
nn.Linear(84,10)
)#分类问题使用交叉熵
#self.criteon=nn.CrossEntropyLoss()def forward(self,x):
batchsz=x.size(0)
x=self.conv_unit(x)
x=x.view(batchsz,16*5*5)
logits=self.fc_unit(x)#pred=F.softmax(logits,dim=1)
#loss=self.criteon(logits,y)
return logitsdef main():
net=Lenet5()
#调用主类方法
tmp = torch.randn(2, 3, 32, 32)
out = net(tmp)
print('lenet5 out:', out.shape)if __name__ == '__main__':
main()
Step3:填补lenet5main.py内容
#利用cifar10数据集+LeNet5网络进行训练
#构建主函数
import torch
#DataLoader可加载多个数据
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
from torch import nn,optim
from LeNET5.lenet5 import Lenet5def main():
batchsz=32
#一次加载一张
cifar_train=datasets.CIFAR10('cifar',True,transform=transforms.Compose([
transforms.Resize((32,32)),
transforms.ToTensor()
]),download=True)
cifar_train=DataLoader(cifar_train,batch_size=batchsz,shuffle=True)cifar_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor()
]), download = True)
cifar_test = DataLoader(cifar_test, batch_size=batchsz, shuffle=True)#测试数据
#利用iter进行迭代,打印出shape
#x,label=iter(cifar_train).next()
#print('x:',x.shape,'label:',label.shape)# 使用cpu计算,如果有cuda,可用cuda
device = torch.device('cpu')
model=Lenet5().to(device)
criteon=nn.CrossEntropyLoss()
optimizer=optim.Adam(model.parameters(),lr=1e-3)
print(model)for epoch in range(1000):model.train()
for batchidx,(x,label) in enumerate(cifar_train):
x,label=x.to(device),label.to(device)
logits=model(x)
loss=criteon(logits,label)optimizer.zero_grad()
loss.backward()
optimizer.step()print(epoch,loss.item())model.eval()
with torch.no_grad():
#test
total_correct=0
total_num=0
for x,label in cifar_test:
x, label = x.to(device), label.to(device)
logits = model(x)
#在1维上最大的一个值
pred=logits.argmax(dim=1)
total_correct+=torch.eq(pred,label).float().sum().item()
total_num+=x.size(0)acc=total_correct/total_num
print(epoch,acc)print(epoch,loss.item())if __name__ == '__main__':
main()
【?项目复现?|?项目复现?基于CIFAR-10+LeNet的训练实现】结果:
文章图片
推荐阅读
- 智能优化算法应用|智能优化算法应用(基于麻雀搜索算法与非完全beta函数的自适应图像增强算法 - 附代码)
- 深度学习|Pytorch入门深度学习(1)——初识人工智能AI
- Pytorch入门教程|4. Pytorch入门教程——创建一个基类来构建一个基本的神经网络
- pytorch|pytorch迁移学习载入部分权重
- Data|windows10 pytorch环境搭建
- Opencv项目实战|Opencv项目实战(07 人脸识别和考勤系统)
- opencv计算机视觉|Opencv形态学——腐蚀、膨胀、开运算与闭运算、梯度运算、礼帽、黑帽
- 人工智能人工神经网络,神经元网络 人工智能
- python|安装pytorch