51 NOD 1227 平均最小公倍数(杜教筛)

1227 平均最小公倍数 推式子
【51 NOD 1227 平均最小公倍数(杜教筛)】 S ( n ) = ∑ i = 1 n ∑ j = 1 i l c m ( i , j ) i = ∑ i = 1 n ∑ j = 1 i i j i g c d ( i , j ) = ∑ i = 1 n ∑ j = 1 i j g c d ( i , j ) = ∑ i = 1 n ∑ d = 1 i ∑ j = 1 i j d ( g c d ( i , j ) = = d ) = ∑ i = 1 n ∑ d = 1 i ∑ j = 1 i d j ( g c d ( j , i d ) = = 1 ) = ∑ i = 1 n ∑ d = 1 i i d ? ( i d ) + ( i d = = 1 ) 2 = ∑ d = 1 n ∑ i = 1 n d i ? ( i ) + ( i = = 1 ) 2 接 下 来 就 是 杜 教 筛 求 ∑ i = 1 n i ? ( i ) 了 , g ( 1 ) S ( n ) = ∑ i = 1 n ( f ? g ) ( i ) ? ∑ i = 2 n f ( i ) S ( n i ) 另 f ( i ) = i , 即 可 求 得 S ( n ) = ∑ i = 1 n i 2 ? ∑ i = 2 n i S ( n d ) S(n) = \sum_{i = 1} ^{n} \sum_{j = 1} ^{i} \frac{lcm(i, j)}{i}\\ = \sum_{i = 1} ^{n} \sum_{j = 1} ^{i} \frac{ij}{igcd(i, j)}\\ = \sum_{i = 1} ^{n} \sum_{j = 1} ^{i} \frac{j}{gcd(i, j)}\\ = \sum_{i = 1} ^{n} \sum_{d = 1} ^{i} \sum_{j = 1} ^{i} \frac{j}{d} (gcd(i, j) == d)\\ = \sum_{i = 1} ^{n} \sum_{d = 1} ^{i} \sum_{j = 1} ^{\frac{i}{d}}j(gcd(j, \frac{i}{d}) == 1)\\ = \sum_{i = 1} ^{n} \sum_{d = 1} ^{i} \frac{\frac{i}{d} \phi(\frac{i}{d}) + (\frac{i}{d} == 1)}{2}\\ = \sum_{d = 1} ^{n} \sum_{i = 1} ^{\frac{n}{d}} \frac{i \phi(i) + (i == 1)}{2} \\ 接下来就是杜教筛求\sum_{i = 1} ^{n}i \phi(i) 了,g(1)S(n) = \sum_{i = 1} ^{n} (f * g)(i) - \sum_{i = 2} ^{n} f(i) S(\frac{n}{i})\\ 另f(i) = i,即可求得S(n) = \sum_{i = 1} ^{n} i ^ 2 - \sum_{i = 2} ^{n}iS(\frac{n}{d})\\ S(n)=i=1∑n?j=1∑i?ilcm(i,j)?=i=1∑n?j=1∑i?igcd(i,j)ij?=i=1∑n?j=1∑i?gcd(i,j)j?=i=1∑n?d=1∑i?j=1∑i?dj?(gcd(i,j)==d)=i=1∑n?d=1∑i?j=1∑di??j(gcd(j,di?)==1)=i=1∑n?d=1∑i?2di??(di?)+(di?==1)?=d=1∑n?i=1∑dn??2i?(i)+(i==1)?接下来就是杜教筛求i=1∑n?i?(i)了,g(1)S(n)=i=1∑n?(f?g)(i)?i=2∑n?f(i)S(in?)另f(i)=i,即可求得S(n)=i=1∑n?i2?i=2∑n?iS(dn?)
代码

/* Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include #define mp make_pair #define pb push_back #define endl '\n' #define mid (l + r >> 1) #define lson rt << 1, l, mid #define rson rt << 1 | 1, mid + 1, r #define ls rt << 1 #define rs rt << 1 | 1using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair pii; const double pi = acos(-1.0); const double eps = 1e-7; const int inf = 0x3f3f3f3f; inline ll read() { ll f = 1, x = 0; char c = getchar(); while(c < '0' || c > '9') { if(c == '-')f = -1; c = getchar(); } while(c >= '0' && c <= '9') { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f * x; }const int N = 1e6 + 10, mod = 1e9 + 7; int prime[N], cnt; ll phi[N], inv2, inv6; bool st[N]; ll quick_pow(ll a, ll n, ll mod) { ll ans = 1; while(n) { if(n & 1) ans = ans * a % mod; a = a * a % mod; n >>= 1; } return ans; }void init() { phi[1] = 1; for(int i = 2; i < N; i++) { if(!st[i]) { prime[cnt++] = i; phi[i] = i - 1; } for(int j = 0; j < cnt && i * prime[j] < N; j++) { st[i * prime[j]] = 1; if(i % prime[j] == 0) { phi[i * prime[j]] = phi[i] * prime[j]; break; } phi[i * prime[j]] = phi[i] * (prime[j] - 1); } } for(int i = 1; i < N; i++) { phi[i] = (1ll * phi[i] * i + phi[i - 1]) % mod; } inv2 = quick_pow(2, mod - 2, mod), inv6 = quick_pow(6, mod - 2, mod); }unordered_map ans_s; ll S(ll n) { if(n < N) return phi[n]; if(ans_s.count(n)) return ans_s[n]; ll ans = n * (n + 1) % mod * (2 * n + 1) % mod * inv6 % mod; for(ll l = 2, r; l <= n; l = r + 1) { r = n / (n / l); ans = (ans - (l + r) * (r - l + 1) / 2 % mod * S(n / l) % mod + mod) % mod; } return ans_s[n] = ans; }ll solve(ll n) { ll ans = 0; for(ll l = 1, r; l <= n; l = r + 1) { r = n / (n / l); ans = (ans + 1ll * (r - l + 1) * S(n / l) % mod) % mod; } return (ans + n) % mod; }int main() { // freopen("in.txt", "r", stdin); // freopen("out.txt", "w", stdout); // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0); init(); ll l = read(), r = read(); printf("%lld\n", ((solve(r) - solve(l - 1)) % mod * inv2 % mod + mod) % mod); return 0; }

    推荐阅读