题目总览
文章图片
1、Plotting a function
代码
import numpy as np
import matplotlib.pyplot as plt
X = np.arange(0,2,0.01) # 可以生成实数
# ~ X = np.linspace(0,0.001,2) # 生成整数
Y = np.sin(X-2)*np.sin(X-2)*np.exp(-X*X)
fig, ax=plt.subplots()
ax.plot(X,Y)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_xlim((0,2))
ax.set_ylim((0,1))
ax.set_title('Exercise 11.1:Plotting a function')
plt.show()
运行结果
文章图片
2、Data 代码
import matplotlib.pyplot as plt
import numpy as np def LinearLeastSquare(X,Y):
N = len(X)
sumx = sum(X)
sumy = sum(Y)
sumx2 = sum(X**2)
sumxy = sum(X*Y)
MA = [[sumx2,sumx],[sumx,N]]
VB = [sumxy,sumx]
eb,c = np.linalg.solve(MA,VB)
return ebdef main():
# generate matrix X
X = []
for i in range(0,20):
X_item = np.random.random(10)
X.append(X_item)
X = np.array(X)
X = X*10
# generate vector b
b = np.random.normal(loc=2.,scale=8.,size=20)
# generate noise vector z
z = np.random.normal(loc=0.,scale=1.,size=10)
# compute estimate vector b
eb = []
for i in range(0,20):
X_item = X[i]
bi = b[i]
Y = X_item * bi + z
eb_item = LinearLeastSquare(X_item,Y)
eb.append(eb_item)
Index = list(range(1,21))
plt.plot(Index,b,'r*',label='$real b$')
plt.plot(Index,eb,'g*',label='$estimate b$')
plt.xlabel('index')
plt.ylabel('value of b and eb')
plt.title('b vs estimate b')
plt.legend()
plt.show()if __name__ == '__main__':
main()
运行结果
文章图片
3、Histogram and density estimation 代码(使用stats)
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import matplotlibz=np.random.normal(loc=10,scale=20,size=10000)
figure,ax=plt.subplots()
ax.hist(z, bins=25,color='g',density=True)
kernel=stats.gaussian_kde(z)
x=np.linspace(-60,80,3000)
y=kernel.pdf(x)
ax.plot(x,y,'b-')
ax.set_title('Exercise 11.3:Histogram and density estimation')
plt.show()
运行结果(使用stats)
文章图片
代码(使用displot)
import seaborn
import matplotlib.pyplot as plt
import numpy as npdata = https://www.it610.com/article/np.random.normal(loc=10,scale=20,size=10000)
seaborn.distplot(data,bins=25,hist=True)
plt.show()
运行结果(使用displot) 【第十二周作业(Matplotlib Exercise)】
文章图片
推荐阅读
- 推荐系统论文进阶|CTR预估 论文精读(十一)--Deep Interest Evolution Network(DIEN)
- Python专栏|数据分析的常规流程
- Python|Win10下 Python开发环境搭建(PyCharm + Anaconda) && 环境变量配置 && 常用工具安装配置
- Python绘制小红花
- Pytorch学习|sklearn-SVM 模型保存、交叉验证与网格搜索
- OpenCV|OpenCV-Python实战(18)——深度学习简介与入门示例
- python|8. 文件系统——文件的删除、移动、复制过程以及链接文件
- 爬虫|若想拿下爬虫大单,怎能不会逆向爬虫,价值过万的逆向爬虫教程限时分享
- 分布式|《Python3网络爬虫开发实战(第二版)》内容介绍
- java|微软认真聆听了开源 .NET 开发社区的炮轰( 通过CLI 支持 Hot Reload 功能)