题目叙述
文章图片
代码 ??按照PPT上的教程进行代码的编写即可,代码如下:
from sklearn import metrics
from sklearn import datasets
from sklearn import cross_validation
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier# Datasets
dataset = datasets.make_classification(n_samples=1000, n_features=10)# Cross-validation
kf = cross_validation.KFold(1000, n_folds=10, shuffle=True)
for train_index, test_index in kf:
X_train, y_train = dataset[0][train_index], dataset[1][train_index]
X_test, y_test = dataset[0][test_index], dataset[1][test_index]# GaussianNB
GaussianNB_clf = GaussianNB()
GaussianNB_clf.fit(X_train, y_train)
GaussianNB_pred = GaussianNB_clf.predict(X_test)# SVM
SVC_clf = SVC(C=1e-01, kernel='rbf', gamma=0.1)
SVC_clf.fit(X_train, y_train)
SVC_pred = SVC_clf.predict(X_test)# Random Forest
Random_Forest_clf = RandomForestClassifier(n_estimators=6)
Random_Forest_clf.fit(X_train, y_train)
Random_Forest_pred = Random_Forest_clf.predict(X_test)# Evaluate the cross-validated performance
# GaussianNB
GaussianNB_accuracy_score = metrics.accuracy_score(y_test, GaussianNB_pred)
GaussianNB_f1_score = metrics.f1_score(y_test, GaussianNB_pred)
GaussianNB_roc_auc_score = metrics.roc_auc_score(y_test, GaussianNB_pred)
print("GaussianNB_accuracy_score: ", GaussianNB_accuracy_score)
print("GaussianNB_f1_score: ", GaussianNB_f1_score)
print("GaussianNB_roc_auc_score: ", GaussianNB_roc_auc_score)# SVC
SVC_accuracy_score = metrics.accuracy_score(y_test, SVC_pred)
SVC_f1_score = metrics.f1_score(y_test, SVC_pred)
SVC_roc_auc_score = metrics.roc_auc_score(y_test, SVC_pred)
print("\nSVC_accuracy_score: ", SVC_accuracy_score)
print("SVC_f1_score: ", SVC_f1_score)
print("SVC_roc_auc_score: ", SVC_roc_auc_score)# Random_Forest
Random_Forest_accuracy_score = metrics.accuracy_score(y_test, Random_Forest_pred)
Random_Forest_f1_score = metrics.f1_score(y_test, Random_Forest_pred)
Random_Forest_roc_auc_score = metrics.roc_auc_score(y_test, Random_Forest_pred)
print("\nRandom_Forest_accuracy_score: ", Random_Forest_accuracy_score)
print("Random_Forest_f1_score: ", Random_Forest_f1_score)
print("Random_Forest_roc_auc_score: ", Random_Forest_roc_auc_score)
结果
【第十五周(scikt-learn)】GaussianNB_accuracy_score: 0.97
GaussianNB_f1_score: 0.9690721649484536
GaussianNB_roc_auc_score: 0.9716981132075472
SVC_accuracy_score: 0.99
SVC_f1_score: 0.9894736842105264
SVC_roc_auc_score: 0.9905660377358491
Random_Forest_accuracy_score: 0.97
Random_Forest_f1_score: 0.968421052631579
Random_Forest_roc_auc_score: 0.9704937775993576
推荐阅读
- 推荐系统论文进阶|CTR预估 论文精读(十一)--Deep Interest Evolution Network(DIEN)
- Python专栏|数据分析的常规流程
- Python|Win10下 Python开发环境搭建(PyCharm + Anaconda) && 环境变量配置 && 常用工具安装配置
- Python绘制小红花
- Pytorch学习|sklearn-SVM 模型保存、交叉验证与网格搜索
- OpenCV|OpenCV-Python实战(18)——深度学习简介与入门示例
- python|8. 文件系统——文件的删除、移动、复制过程以及链接文件
- 爬虫|若想拿下爬虫大单,怎能不会逆向爬虫,价值过万的逆向爬虫教程限时分享
- 分布式|《Python3网络爬虫开发实战(第二版)》内容介绍
- java|微软认真聆听了开源 .NET 开发社区的炮轰( 通过CLI 支持 Hot Reload 功能)