二分查找的理解:
二分查找就是一种有序数组中查找某一特定元素的搜索算法
关键词:1. 有序 2. 数组
实现原理:
文章图片
步骤:
- 查找整个数组中间位置(中间位置1)
- 判断目标元素5比中间位置元素值大还是小(5<13),所以只需要中间元素左半端进行查找
- 找1-13元素的中间位置(中间位置2)
- 判断目标元素位置和中间元素的大小关系,(5=5),搜索停止,返回中间元素下标
- 不存在重复值
function noSame(arr, target) {
if (arr.length <= 1) return -1
// 低位下标
let lowIndex = 0
// 高位下标
let highIndex = arr.length - 1while (lowIndex <= highIndex) {
// 中间下标
const midIndex = Math.floor((lowIndex + highIndex) / 2)
if (target < arr[midIndex]) {
highIndex = midIndex - 1
} else if (target > arr[midIndex]) {
lowIndex = midIndex + 1
} else {
// target === arr[midIndex]
return midIndex
}
}
return -1
}
- 存在重复值
function Same(arr, target) {
if (arr.length <= 1) return -1
// 低位下标
let lowIndex = 0
// 高位下标
let highIndex = arr.length - 1while (lowIndex <= highIndex) {
// 中间下标
const midIndex = Math.floor((lowIndex + highIndex) / 2)
if (target < arr[midIndex]) {
highIndex = midIndex - 1
} else if (target > arr[midIndex]) {
lowIndex = midIndex + 1
} else {
// 当 target 与 arr[midIndex] 相等的时候,如果 midIndex 为0或者前一个数比 target 小那么就找到了第一个等于给定值的元素,直接返回
if (midIndex === 0 || arr[midIndex - 1] < target) return midIndex
// 否则高位下标为中间下标减1,继续查找
highIndex = midIndex - 1
}
}
return -1
}
缺点:
【算法|算法-二分查找】有序:我们很难保证我们的数组都是有序的
数组:数组读取效率是O(1),可是它的插入和删除某个元素的效率却是O(n),并且数组的存储是需要连续的内存空间,不适合大数据的情况
应用场景
- 不适合数据量太小的数列;数列太小,直接顺序遍历说不定更快,也更简单
- 每次元素与元素的比较是比较耗时的,这个比较操作耗时占整个遍历算法时间的大部分,那么使用二分查找就能有效减少元素比较的次数
- 不适合数据量太大的数列,二分查找作用的数据结构是顺序表,也就是数组,数组是需要连续的内存空间的,系统并不一定有这么大的连续内存空间可以使用
推荐阅读
- 人工智能|干货!人体姿态估计与运动预测
- 分析COMP122 The Caesar Cipher
- 技术|为参加2021年蓝桥杯Java软件开发大学B组细心整理常见基础知识、搜索和常用算法解析例题(持续更新...)
- 笔记|C语言数据结构——二叉树的顺序存储和二叉树的遍历
- C语言学习(bit)|16.C语言进阶——深度剖析数据在内存中的存储
- Python机器学习基础与进阶|Python机器学习--集成学习算法--XGBoost算法
- 数据结构与算法|【算法】力扣第 266场周赛
- 数据结构和算法|LeetCode 的正确使用方式
- leetcode|今天开始记录自己的力扣之路
- 人工智能|【机器学习】深度盘点(详细介绍 Python 中的 7 种交叉验证方法!)