R语言模拟疫情传播图RVirusBroadcast展示疫情数据

目录

  • 前言
  • 效果展示
  • 小结
  • 参考
    • 附录:RVirusBroadcast代码

前言 前几天微博的一个热搜主题是**“计算机仿真程序告诉你为什么现在还没到出门的时候!!!”**,该视频用模拟的疫情数据告诉大家“不要随便出门(宅在家)”对战胜疫情很重要,生动形象,广受好评。
所用的程序叫VirusBroadcast,源码已经公开,是用Java写的。鉴于画图是R语言的优势,所以笔者在读过源码后,写了一个VirusBroadcast程序的R语言版本,暂且叫做RVirusBroadcast。与VirusBroadcast相比,RVirusBroadcast所用的模型和逻辑大体不变,只是在少许细节上做了修改。
(为了防止上面的超链接被过滤掉而打不开,文末也放上了明文链接)

效果展示 下面两段视频是RVirusBroadcast用模拟的数据展示的效果,由于笔者的电脑性能实在一般,所以暂时只模拟了30天的数据。请再次注意下面两段视频的数据是模拟生成的,纯属虚构,不具有现实意义,仅供电脑模拟实验所用。
其他条件不变,当人们随意移动时,病毒传播迅速,疫情很难控制

其他条件不变,当人们控制自己的移动时,病毒传播缓慢,疫情逐渐得到控制


小结 诚如VirusBroadcast的作者所说,现在的模型是一个很简单的模型,所用的数据也是模拟生成的,还需优化改进。朋友们如果有兴趣,可以自行查阅复制下文中的R代码,自由修改。

参考 [1] “计算机仿真程序告诉你为什么现在还没到出门的时候” 原视频地址:
https://www.bilibili.com/video/av86478875?spm_id_from=333.788.b_765f64657363.1

附录:RVirusBroadcast代码
###name:RVirusBroadcast ###author:hxj7(hxj5hxj5@126.com)###version:202002010###note:本程序是"VirusBroadcast (in Java)"的R版本###VirusBroadcast (in Java) 项目链接:###https://github.com/KikiLetGo/VirusBroadcast/tree/master/srclibrary(tibble)library(dplyr) ########## 模拟参数 ########## ORIGINAL_COUNT <- 50# 初始感染数量 BROAD_RATE <- 0.8# 传播率 SHADOW_TIME <- 140# 潜伏时间,14天为140 HOSPITAL_RECEIVE_TIME <- 10# 医院收治响应时间 BED_COUNT <- 1000# 医院床位 MOVE_WISH_MU <- -0.99# 流动意向平均值,建议调整范围:[-0.99,0.99]; #-0.99 人群流动最慢速率,甚至完全控制疫情传播; #0.99为人群流动最快速率, 可导致全城感染 CITY_PERSON_SIZE <- 5000# 城市总人口数量 FATALITY_RATE <- 0.02# 病死率,根据2月6日数据估算(病死数/确诊数)为0.02 SHADOW_TIME_SIGMA <- 25# 潜伏时间方差 CURED_TIME <- 50# 治愈时间均值,从入院开始计时 CURED_SIGMA <- 10# 治愈时间标准差 DIE_TIME <- 300# 死亡时间均值,30天,从发病(确诊)时开始计时 DIE_SIGMA <- 50# 死亡时间标准差 CITY_WIDTH <- 700# 城市大小即窗口边界,限制不允许出城 CITY_HEIGHT <- 800 MAX_TRY <- 300# 最大模拟次数,300代表30天 ########## 生成人群点,用不同颜色代表不同健康状态。 ########## # 用正态分布刻画人群点的分布 CITY_CENTERX <- 400# x轴的mu值 CITY_CENTERY <- 400 PERSON_DIST_X_SIGMA <- 100# x轴的sigma值 PERSON_DIST_Y_SIGMA <- 100 # 市民状态应该需要细分,虽然有的状态暂未纳入模拟,但是细分状态应该保留 STATE_NORMAL <- 0# 正常人,未感染的健康人 STATE_SUSPECTED <- STATE_NORMAL + 1# 有暴露感染风险 STATE_SHADOW <- STATE_SUSPECTED + 1# 潜伏期 STATE_CONFIRMED <- STATE_SHADOW + 1# 发病且已确诊为感染病人 STATE_FREEZE <- STATE_CONFIRMED + 1# 隔离治疗,禁止位移 STATE_DEATH <- STATE_FREEZE + 1# 病死者 STATE_CURED <- STATE_DEATH + 1# 治愈数量用于计算治愈出院后归还床位数量,该状态是否存续待定 worldtime <- 0 NTRY_PER_DAY <- 10# 一天模拟几次 getday <- function(t) (t - 1) %/% NTRY_PER_DAY + 1 # 生成人群数据 format_coord <- function(coord, boundary) { if (coord < 0) return(runif(1, 0, 10)) else if(coord > boundary) return(runif(1, boundary - 10, boundary)) else return(coord) } set.seed(123) people <- tibble( id = 1:CITY_PERSON_SIZE, x = sapply(rnorm(CITY_PERSON_SIZE, CITY_CENTERX, PERSON_DIST_X_SIGMA),format_coord, boundary = CITY_WIDTH),# (x, y) 为人群点坐标 y = sapply(rnorm(CITY_PERSON_SIZE, CITY_CENTERY, PERSON_DIST_Y_SIGMA),format_coord, boundary = CITY_HEIGHT), state = STATE_NORMAL,# 健康状态 infected_time = 0,# 感染时刻 confirmed_time = 0,# 确诊时刻 freeze_time = 0,# 隔离时刻 cured_moment = 0,# 痊愈时刻,为0代表不确定 die_moment = 0# 死亡时刻,为0代表未确定,-1代表不会病死 ) %>% mutate(tx = rnorm(CITY_PERSON_SIZE, x, PERSON_DIST_X_SIGMA),# target x ty = rnorm(CITY_PERSON_SIZE, y, PERSON_DIST_Y_SIGMA), has_target = T, is_arrived = F) # 随机选择初始感染者 peop_id <- sample(people$id, ORIGINAL_COUNT) people$state[peop_id] <- STATE_SHADOW people$infected_time[peop_id] <- worldtime people$confirmed_time[peop_id] <- worldtime +max(rnorm(length(peop_id), SHADOW_TIME / 2, SHADOW_TIME_SIGMA), 0) ########## 生成床位点 ########## HOSPITAL_X <- 720# 第一张床位的x坐标 HOSPITAL_Y <- 80# 第一张床位的y坐标 NBED_PER_COLUMN <- 100# 医院每一列有多少张床位 BED_ROW_SPACE <- 6# 一行中床位的间距 BED_COLUMN_SPACE <- 6# 一列中床位的间距 bed_ncolumn <- ceiling(BED_COUNT / NBED_PER_COLUMN) hosp_beds <- tibble(id = 1, x = 0, y = 0, is_empty = T, state = STATE_NORMAL) %>%slice(-1) if (BED_COUNT > 0) { hosp_beds <- tibble( id = 1:BED_COUNT, x = HOSPITAL_X + rep(((1:bed_ncolumn) - 1) * BED_ROW_SPACE, each = NBED_PER_COLUMN)[1:BED_COUNT],y = HOSPITAL_Y + 10 - BED_COLUMN_SPACE + rep((1:NBED_PER_COLUMN) * BED_COLUMN_SPACE, bed_ncolumn)[1:BED_COUNT],is_empty = T,person_id = 0# 占用床位的患者的序号,床位为空时为0)}########## 准备画图的数据 ##########npeople_total <- CITY_PERSON_SIZEnpeople_shadow <- ORIGINAL_COUNTnpeople_confirmed <- npeople_freeze <- npeople_cured <- npeople_death <- 0nbed_need <- 0########## 画出初始数据 ########### 设置画图参数person_color <- data.frame(# 不同健康状态的颜色不同label = c("健康", "潜伏", "确诊", "隔离", "治愈", "死亡"),state = c(STATE_NORMAL, STATE_SHADOW, STATE_CONFIRMED, STATE_FREEZE, STATE_CURED, STATE_DEATH),color = c("lightgreen",# 健康"#EEEE00",# 潜伏期"red",# 确诊"#FFC0CB",# 隔离"green",# 治愈"black"# 死亡), stringsAsFactors = F)bed_color <- data.frame(is_empty = c(T, F), color = c("#F8F8FF", "#FFC0CB"), stringsAsFactors = F) x11(width = 5, height = 7, xpos = 0, ypos = 0, title = "人群变化模拟")window_hist <- dev.cur()x11(width = 7, height = 7, xpos = 460, ypos = 0, title = "疫情传播模拟")window_scatter <- dev.cur()max_plot_x <- ifelse(BED_COUNT > 0, max(hosp_beds$x), CITY_WIDTH) + 10# 疫情传播模拟散点图dev.set(window_scatter)plot(x = people$x, y = people$y, cex = .8, pch = 20, xlab = NA, ylab = NA,xlim = c(5, max_plot_x), xaxt = "n", yaxt = "n", bty = "n", main = "疫情传播模拟", sub = paste0("世界时间第 ", getday(worldtime), " 天"),col = (people %>% left_join(person_color, by = "state") %>%select(color))$color)points(x = hosp_beds$x, y = hosp_beds$y, cex = .8, pch = 20,col = (hosp_beds %>% left_join(bed_color, by = "is_empty") %>%select(color))$color)rect(HOSPITAL_X - BED_ROW_SPACE / 2, HOSPITAL_Y + 10 - BED_COLUMN_SPACE, max(hosp_beds$x) + BED_ROW_SPACE / 2, max(hosp_beds$y + BED_COLUMN_SPACE))legend(x = 150, y = -30, legend = person_color$label, col = person_color$color,pch = 20, horiz = T, bty = "n", xpd = T)# 人群变化模拟条形图dev.set(window_hist)bp_data <- c(npeople_death, npeople_cured, nbed_need, npeople_freeze, npeople_confirmed, npeople_shadow)bp_color <- c("black", "green", "#FFE4E1", "#FFC0CB", "red", "#EEEE00")bp_labels <- c("死亡", "治愈", "不足\n床位", "隔离", "累计\n确诊", "潜伏")bp <- barplot(bp_data, horiz = T, border = NA, col = bp_color, xlim = c(0, CITY_PERSON_SIZE * 1), main = "人群变化模拟", sub = paste0("世界时间第 ", getday(worldtime), " 天"))abline(v = BED_COUNT, col = "gray", lty = 3)abline(v = CITY_PERSON_SIZE, col = "gray", lty = 1)text(x = -350, y = bp, labels = bp_labels, xpd = T)text(x = bp_data + CITY_PERSON_SIZE / 15, y = bp, xpd = T,labels = ifelse(bp_data > 0, bp_data, ""))legend(x = 300, y = -.6, legend = c("总床位数", "城市总人口"), col = "gray",lty = c(3, 1), bty = "n", horiz = T, xpd = T)Sys.sleep(5)# 手动调整窗口大小########## 更新人群数据 ########### 市民流动意愿以及移动位置参数174MOVE_WISH_SIGMA <- 1MOVE_DIST_SIGMA <- 50SAFE_DIST <- 2# 安全距离worldtime <- worldtime + 1get_min_dist <- function(person, peop) {# 一个人和一群人之间的最小距离min(sqrt((person["x"] - peop$x) ^ 2 + (person["y"] - peop$y) ^ 2))}for (i in 1:MAX_TRY) {# 如果已经隔离或者死亡了,就不需要处理了## 处理已经确诊的感染者(即患者)peop_id <- people$id[people$state == STATE_CONFIRMED & people$die_moment == 0]if ((npeop <- length(peop_id)) > 0) {people$die_moment[peop_id] <- ifelse(runif(npeop, 0, 1) < FATALITY_RATE,# 用均匀分布模拟确诊患者是否会死亡people$confirmed_time + max(rnorm(npeop, DIE_TIME, DIE_SIGMA), 0),# 发病后确定死亡时刻-1# 逃过了死神的魔爪)}# 如果患者已经确诊,且(世界时刻-确诊时刻)大于医院响应时间,# 即医院准备好病床了,可以抬走了peop_id <- people$id[people$state == STATE_CONFIRMED & worldtime - people$confirmed_time >= HOSPITAL_RECEIVE_TIME]if ((npeop <- length(peop_id)) > 0) {if ((nbed_empty <- sum(hosp_beds$is_empty)) > 0) {# 有空余床位nbed_use <- min(npeop, nbed_empty)bed_id <- hosp_beds$id[hosp_beds$is_empty][1:nbed_use]# 更新患者信息peop_id2 <- sample(peop_id, nbed_use)# 这里是随机选择,理论上应该按症状轻重people$x[peop_id2] <- hosp_beds$x[bed_id]people$y[peop_id2] <- hosp_beds$y[bed_id]people$state[peop_id2] <- STATE_FREEZEpeople$freeze_time[peop_id2] <- worldtime# 更新床位信息hosp_beds$is_empty[bed_id] <- Fhosp_beds$person_id[bed_id] <- peop_id2} }# TODO 需要确定一个变量用于治愈时长。# 为了说明问题,暂时用一个正态分布模拟治愈时长并且假定治愈的人不会再被感染peop_id <- people$id[people$state == STATE_FREEZE & people$cured_moment == 0]if ((npeop <- length(peop_id)) > 0) { # 正态分布模拟治愈时间people$cured_moment[peop_id] <- people$freeze_time[peop_id] + max(rnorm(npeop, CURED_TIME, CURED_SIGMA), 0)}peop_id <- people$id[people$state == STATE_FREEZE & people$cured_moment > 0 &worldtime >= people$cured_moment]if ((npeop <- length(peop_id)) > 0) {# 归还床位people$state[peop_id] <- STATE_CUREDhosp_beds$is_empty[! hosp_beds$is_empty & hosp_beds$person_id %in% peop_id] <- Tpeople$x[peop_id] <- sapply(rnorm(npeop, CITY_CENTERX, PERSON_DIST_X_SIGMA), format_coord, boundary = CITY_WIDTH)# (x, y) 为人群点坐标people$y[peop_id] <- sapply(rnorm(npeop, CITY_CENTERY, PERSON_DIST_Y_SIGMA), format_coord, boundary = CITY_HEIGHT)people$tx[peop_id] <- rnorm(npeop, people$x[peop_id], PERSON_DIST_X_SIGMA)people$ty[peop_id] <- rnorm(npeop, people$y[peop_id], PERSON_DIST_Y_SIGMA)people$has_target[peop_id] <- Tpeople$is_arrived[peop_id] <- F}# 处理病死者peop_id <- people$id[people$state %in% c(STATE_CONFIRMED, STATE_FREEZE) & worldtime >= people$die_moment & people$die_moment > 0]if (length(peop_id) > 0) {# 归还床位people$state[peop_id] <- STATE_DEATHhosp_beds$is_empty[! hosp_beds$is_empty & hosp_beds$person_id %in% peop_id] <- T}# 处理发病的潜伏期感染者peop_id <- people$id[people$state == STATE_SHADOW &worldtime >= people$confirmed_time]if ((npeop <- length(peop_id)) > 0) {people$state[peop_id] <- STATE_CONFIRMED# 潜伏者发病}# 处理未隔离者的移动问题peop_id <- people$id[! people$state %in% c(STATE_FREEZE, STATE_DEATH) & rnorm(CITY_PERSON_SIZE, MOVE_WISH_MU, MOVE_WISH_SIGMA) > 0] # 流动意愿if ((npeop <- length(peop_id)) > 0) {# 正态分布模拟要移动到的目标点pp_id <- peop_id[! people$has_target[peop_id] | people$is_arrived[peop_id]]if ((npp <- length(pp_id)) > 0) {people$tx[pp_id] <- rnorm(npp, people$tx[pp_id], PERSON_DIST_X_SIGMA)people$ty[pp_id] <- rnorm(npp, people$ty[pp_id], PERSON_DIST_Y_SIGMA)people$has_target[pp_id] <- Tpeople$is_arrived[pp_id] <- F}# 计算运动位移262dx <- people$tx[peop_id] - people$x[peop_id]dy <- people$ty[peop_id] - people$y[peop_id]move_dist <- sqrt(dx ^ 2 + dy ^ 2)people$is_arrived[peop_id][move_dist < 1] <- T# 判断是否到达目标点266pp_id <- peop_id[move_dist >= 1]if ((npp <- length(pp_id)) > 0) {udx <- sign(dx[move_dist >= 1])# x轴运动方向269udy <- sign(dy[move_dist >= 1])# 是否到了边界pid_x <- (1:npp)[people$x[pp_id] + udx < 0 | people$x[pp_id] + udx > CITY_WIDTH]pid_y <- (1:npp)[people$y[pp_id] + udy < 0 | people$y[pp_id] + udy > CITY_HEIGHT]# 更新到了边界的点的信息people$x[pp_id[pid_x]] <- people$x[pp_id[pid_x]] - udx[pid_x]people$y[pp_id[pid_y]] <- people$y[pp_id[pid_y]] - udy[pid_y]people$has_target[unique(c(pp_id[pid_x], pp_id[pid_y]))] <- F# 更新没有到边界的点的信息278people$x[pp_id[! pp_id %in% pid_x]] <- people$x[pp_id[! pp_id %in% pid_x]] + udx[! pp_id %in% pid_x]people$y[pp_id[! pp_id %in% pid_y]] <- people$y[pp_id[! pp_id %in% pid_y]] + udy[! pp_id %in% pid_y]}}# 处理健康人被感染的问题# 通过一个随机幸运值和安全距离决定感染其他人286normal_peop_id <- people$id[people$state == STATE_NORMAL]other_peop_id <- people$id[! people$state %in% c(STATE_NORMAL, STATE_CURED)]if (length(normal_peop_id) > 0) {normal_other_dist <- apply(people[normal_peop_id, ], 1, get_min_dist,peop = people[other_peop_id, ])normal2other_id <- normal_peop_id[normal_other_dist < SAFE_DIST &runif(length(normal_peop_id), 0, 1) < BROAD_RATE]if ((n2other <- length(normal2other_id)) > 0) {people$state[normal2other_id] <- STATE_SHADOWpeople$infected_time[normal2other_id] <- worldtimepeople$confirmed_time[normal2other_id] <- worldtime + max(rnorm(n2other, SHADOW_TIME / 2, SHADOW_TIME_SIGMA), 0)}}# 画出更新后的数据npeople_confirmed <- sum(people$state >= STATE_CONFIRMED)npeople_death <- sum(people$state == STATE_DEATH)npeople_freeze <- sum(people$state == STATE_FREEZE)npeople_shadow <- sum(people$state == STATE_SHADOW)npeople_cured <- sum(people$state == STATE_CURED)nbed_need <- npeople_confirmed - npeople_cured - npeople_death - BED_COUNTnbed_need <- ifelse(nbed_need > 0, nbed_need, 0)# 不足病床数# 疫情传播模拟散点图dev.set(window_scatter)plot(x = people$x, y = people$y, cex = .8, pch = 20, xlab = NA, ylab = NA,xlim = c(5, max_plot_x), xaxt = "n", yaxt = "n", bty = "n", main = "疫情传播模拟", sub = paste0("世界时间第 ", getday(worldtime), " 天"),col = (people %>% left_join(person_color, by = "state") %>%select(color))$color)points(x = hosp_beds$x, y = hosp_beds$y, cex = .8, pch = 20,col = (hosp_beds %>% left_join(bed_color, by = "is_empty") %>%select(color))$color)rect(HOSPITAL_X - BED_ROW_SPACE / 2, HOSPITAL_Y + 10 - BED_COLUMN_SPACE, max(hosp_beds$x) + BED_ROW_SPACE / 2, max(hosp_beds$y + BED_COLUMN_SPACE))legend(x = 150, y = -30, legend = person_color$label, col = person_color$color,pch = 20, horiz = T, bty = "n", xpd = T)# 人群变化模拟条形图dev.set(window_hist)bp_data <- c(npeople_death, npeople_cured, nbed_need, npeople_freeze, npeople_confirmed, npeople_shadow)bp <- barplot(bp_data, horiz = T, border = NA, col = bp_color, xlim = c(0, CITY_PERSON_SIZE * 1), main = "人群变化模拟", sub = paste0("世界时间第 ", getday(worldtime), " 天"))abline(v = BED_COUNT, col = "gray", lty = 3)abline(v = CITY_PERSON_SIZE, col = "gray", lty = 1)text(x = -350, y = bp, labels = bp_labels, xpd = T)text(x = bp_data + CITY_PERSON_SIZE / 15, y = bp, xpd = T,labels = ifelse(bp_data > 0, bp_data, ""))legend(x = 300, y = -.6, legend = c("总床位数", "城市总人口"), col = "gray",lty = c(3, 1), bty = "n", horiz = T, xpd = T)# 更新世界时间worldtime <- worldtime + 1}

【R语言模拟疫情传播图RVirusBroadcast展示疫情数据】以上就是R语言模拟疫情传播图告诉你为什么还没到出门的时候的详细内容,更多关于R语言模拟疫情传播图的资料请关注脚本之家其它相关文章!

    推荐阅读