『无为则无心』Python基础|『无为则无心』Python基础 — 63、Python中的生成器


目录

  • 1、为什么要有生成器
  • 2、创建生成器
    • (1)简单创建生成器
    • (2)生成器的使用
  • 3、yield关键词
    • (1)yield关键词说明
    • (2)send()方法说明
  • 4、使用yield实现斐波那契数列
  • 5、总结

1、为什么要有生成器 Python在数据科学领域可以说是很火,我想有一部分的功劳就是它的生成器了吧。
我们知道我们可以用列表储存数据,可是当我们的数据特别大的时候,列表中的数据都是放在内存中,受到内存限制,列表容量肯定是有限的,而且还会降低计算机的性能。
如果仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。但如果列表中元素是按照某种算法推算出来,那我们就可以在循环的过程中不断推算出后续的元素,这样就不必创建完整的列表数据,从而节省大量的空间。
换句话说,我又想要得到庞大的数据,又想让它占用空间少,这时生成器就派上用场了,它可以说是一个不怎么占计算机资源的一种方法。
2、创建生成器 (1)简单创建生成器
将一个列表推导式(也叫列表生成式) [] 改为 ()即可创建一个生成器。
# 1.用推导式定义一个列表 # 关于推导式请看以前的文章有讲解。 my_list = [x * x for x in range(10)]# 打印列表 print(my_list) # 查看my_list类型,是一个列表 print(type(my_list)) """ 输出结果: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] """# 2.创建一个生成器 my_gen = (x * x for x in range(10))# 打印生成器,是一个生成器对象 print(my_gen) # 查看my_gen对象类型,是生成器类型 print(type(my_gen)) """ 输出结果: at 0x0000000002575148> """

(2)生成器的使用
# 创建生成器 my_gen = (x * x for x in range(10))# 1。方式一:遍历生成器,使用next方法 print(my_gen.__next__())# 0 print(my_gen.__next__())# 1 print(my_gen.__next__())# 4 print(my_gen.__next__())# 9 # 或者 print(next(my_gen))# 16 print(next(my_gen))# 没有数据了则会抛出异常StopIteration# 2.方式二:遍历生成器的内容 for i in my_gen: print(1)# 3.方式三:遍历生成器的内容 while True: try: # 调用next函数,获取下一个字符 result = next(my_gen) print(result) except StopIteration: # 释放对it的引用,即废弃迭代器对象 del my_gen # 不推出循环会成为私循环 break

提示:
  • 在上边练习中,可以看到和迭代器的用法差不多,在这里说明一下生成器本身就是一个迭代器。如果有对迭代器不清楚的可以查看前面说明迭代器的文章。
  • 上面方式一不断调用next()方法回去元素,实在是太变态了,正确的方法是使用for循环。
  • generator保存的是算法,每次调用next(),就计算出下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。
总结:
  • []推导出来的是迭代器(Iterables)。
  • ()推导出来的是生成器(Generators)。
3、yield关键词 (1)yield关键词说明
如果我们想定义一个自己的生成器函数怎么办?
Python有yield关键词。其作用和return的功能差不多,就是返回一个值给调用者,只不过有yield的函数返回值后,函数依然保持调用yield时的状态,当下次调用的时候,在原先的基础上继续执行代码,直到遇到下一个yield或者满足结束条件结束函数为止。
啥意思?啥意思?啥意思?
  • 你先把yield关键字直观的看做return关键字,它首先是return的功能,就是在函数或方法中返回某个值,返回之后程序就不再往下运行了。
  • yield相当于返回一个值给调用者,停止执行函数中的语句,并且记住这个返回的位置。下次迭代时(或者执行next方法的时候),代码从yield记录位置的下一条语句开始执行。
  • 带有yield的函数不再是一个普通函数,而是一个生成器generator
  • 调用一个生成器函数,返回的是一个迭代器对象。
示例:
# 定义一个生成器函数 def testYield(): yield 1 yield 2 yield 3# 获得一个生成器对象 ty = testYield()""" 调用过程: next(ty)相当于ty.__next__() 掉调用一次next(ty)时 就会执行testYield()内的方法。 当执行的第一行, yield 1时, 返回当前yield的值1给调用者,停止向下执行,并记录函数中当前的执行位置。 也就是每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值。 程序执行结束当下次再调用next(ty)的时候, 还是会执行testYield()内的方法, 只不过是从yield 1下面一句开始执行。 以此类推。 """ print(next(ty))# 1 print(next(ty))# 2 print(next(ty))# 3 print(next(ty))# StopIteration

注意:每次调用 testYield()函数都会生成一个新的 generator 实例,各实例互不影响。
(2)send()方法说明
send()方法和next()方法一样,都能让生成器继续往下走一步(下次遇到yield停),但send()能传一个值,这个值作为yield表达式整体的结果。
def testYield(): yield 1 y = yield 2 if (y == 'hello'): yield 9 yield 3ty = testYield()print(ty.__next__())# 1 print(next(ty))# 2 """ 第三次执行,send方法会把"hello"传递进去 就是y = "hello" 换句话说,就是send可以强行修改上一个yield表达式值 程序会从第二个yield的下一行开始执行 执行到下一个yield停止,并记录位置,返回结果。 """ print(ty.send("hello"))# 9 print(next(ty))# 3 print(next(ty))# StopIteration

注意:第一次执行要么next(ty)要么ty.send(None),不能使用ty.send('xxxxx'),否则会报错的。
4、使用yield实现斐波那契数列
""" 数学中有个著名的斐波那契数列(Fibonacci), 数列中第?个数0,第?个数1,其后的每?个数都可由前两个数相加得到: 如下: 0,1,1,2,3,5,8,13,21,34,...现在我们想要通过for...in...循环来遍历迭代斐波那契数列中的前n个数。 那么这个斐波那契数列我们就可以?生成来实现, 每次迭代都通过数学计算来?成下?个数。 """ from collections.abc import Iterable, Iteratorclass FibGenerator(object): """ fib数列生成器 """# 初始化方法 def __init__(self): # 斐波拉契数列中的前两个数 self.num1 = 0 self.num2 = 1# 用来记录迭代次数(计数器) self.i = 0def gen(self, count): # 用来保存迭代的总次数 self.count = count# 判断是否迭代结束,如果没有到达迭代次数,则返回数据 # self.count 需要迭代的次数 # self.i已迭代次数 while self.i < self.count: yield self.num2 # 计算num1, num2的值,方便下次迭代返回 # 这里运用的是序列的封包与解包,不会的可以看我以前的文章(元组) self.num1, self.num2 = self.num2, self.num1 + self.num2# 执行一次next方法,计数器+1 self.i = self.i + 1# 创建一个对象 fibGen = FibGenerator()# 调用生成器函数得到一个生成器 fg = fibGen.gen(15)# fibIter对象是一个迭代器 print(isinstance(fg, Iterable))# True print(isinstance(fg, Iterator))# True# next方法方式获取数据 # print(next(fg))# 1 # print(next(fg))# 1 # print(next(fg))# 2 # print(next(fg))# 3 # print(next(fg))# 5 # print(next(fg))# 8# 遍历生成器,可执行 for li in fg: print(li)

5、总结
  • 生成器generator就是迭代器iterator的一种,以更优雅的方式实现的iterator,而且完全可以像使用iterator一样使用generator
  • 当然除了定义,定义一个iterator,你需要分别实现__iter__()方法方法和__next__()方法。但generator只需要一个yield关键字就可以。
  • Python生成器主要目的就是为了让你的代码更省资源,更高效!
【『无为则无心』Python基础|『无为则无心』Python基础 — 63、Python中的生成器】参考:
  • https://blog.csdn.net/weixin_37720172/article/details/78482291
  • https://www.cnblogs.com/liangmingshen/p/9706181.html
  • https://blog.csdn.net/xiangxianghehe/article/details/77281186

    推荐阅读