08NumPy学习——数组操作

Numpy 中包含了一些函数用于处理数组,大概可分为以下几类:

  • 修改数组形状
  • 翻转数组
  • 修改数组维度
  • 连接数组
  • 分割数组
  • 数组元素的添加与删除
1. 修改数组形状
函数 描述
reshape 不改变数据的条件下修改形状
flat 数组元素迭代器
flatten 返回一份数组拷贝,对拷贝所做的修改不会影响原始数组
ravel 返回展开数组
numpy.reshape
numpy.reshape 函数可以在不改变数据的条件下修改形状,格式如下:
numpy.reshape(arr, newshape, order=‘C’)
参数说明:
  • arr:要修改形状的数组
  • newshape:整数或者整数数组,新的形状应当兼容原有形状
  • order:‘C’ – 按行,‘F’ – 按列,‘A’ – 原顺序,‘k’ – 元素在内存中的出现顺序。
import numpy as np a = np.arange(8) print ('原始数组:') print (a) print ('\n') b = a.reshape(4,2) print ('修改后的数组:') print (b)

输出结果:
原始数组:
[0 1 2 3 4 5 6 7]

修改后的数组:
[ [0 1]
[2 3]
[4 5]
[6 7] ]
numpy.ndarray.flat
numpy.ndarray.flat 是一个数组元素迭代器,实例如下:
import numpy as np a = np.arange(9).reshape(3,3) print ('原始数组:') for row in a: print (row) #对数组中每个元素都进行处理,可以使用flat属性,该属性是一个数组元素迭代器: print ('迭代后的数组:') for element in a.flat: print (element)

输出结果:
原始数组:
[0 1 2]
[3 4 5]
[6 7 8]
迭代后的数组:
0
1
2
3
4
5
6
7
8
numpy.ndarray.flatten
numpy.ndarray.flatten 返回一份数组拷贝,对拷贝所做的修改不会影响原始数组,格式如下:
ndarray.flatten(order=‘C’)
参数说明:
  • order:‘C’ – 按行,‘F’ – 按列,‘A’ – 原顺序,‘K’ – 元素在内存中的出现顺序。
import numpy as np a = np.arange(8).reshape(2,4) print ('原数组:') print (a) print ('\n') # 默认按行 print ('展开的数组:') print (a.flatten()) print ('\n') print ('以 F 风格顺序展开的数组:') print (a.flatten(order = 'F'))

输出结果:
原数组:
[ [0 1 2 3]
[4 5 6 7] ]

展开的数组:
[0 1 2 3 4 5 6 7]

以 F 风格顺序展开的数组:
[0 4 1 5 2 6 3 7]
numpy.ravel
numpy.ravel() 展平的数组元素,顺序通常是"C风格",返回的是数组视图(view,有点类似 C/C++引用reference的意味),修改会影响原始数组。
该函数接收两个参数:
numpy.ravel(a, order=‘C’)
参数说明:
  • order:‘C’ – 按行,‘F’ – 按列,‘A’ – 原顺序,‘K’ – 元素在内存中的出现顺序。
import numpy as np a = np.arange(8).reshape(2,4) print ('原数组:') print (a) print ('\n') print ('调用 ravel 函数之后:') print (a.ravel()) print ('\n') print ('以 F 风格顺序调用 ravel 函数之后:') print (a.ravel(order = 'F'))

输出结果:
原数组:
[ [0 1 2 3]
[4 5 6 7] ]

调用 ravel 函数之后:
[0 1 2 3 4 5 6 7]

以 F 风格顺序调用 ravel 函数之后:
[0 4 1 5 2 6 3 7]
2. 翻转数组
函数 描述
transpose 对换数组的维度
ndarray.T 和 self.transpose() 相同
rollaxis 向后滚动指定的轴
swapaxes 对换数组的两个轴
numpy.transpose
numpy.transpose 函数用于对换数组的维度,格式如下:
numpy.transpose(arr, axes)
参数说明:
  • arr:要操作的数组
  • axes:整数列表,对应维度,通常所有维度都会对换。
import numpy as np a = np.arange(12).reshape(3,4) print ('原数组:') print (a ) print ('\n') print ('对换数组:') print (np.transpose(a))

输出结果:
原数组:
[ [ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11] ]

对换数组:
[ [ 0 4 8]
[ 1 5 9]
[ 2 6 10]
[ 3 7 11] ]
numpy.ndarray.T 类似 numpy.transpose:
import numpy as np a = np.arange(12).reshape(3,4) print ('原数组:') print (a) print ('\n') print ('转置数组:') print (a.T)

输出结果:
原数组:
[ [ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11] ]

转置数组:
[ [ 0 4 8]
[ 1 5 9]
[ 2 6 10]
[ 3 7 11] ]
numpy.rollaxis
numpy.rollaxis 函数向后滚动特定的轴到一个特定位置,格式如下:
numpy.rollaxis(arr, axis, start)
参数说明:
  • arr:数组
  • axis:要向后滚动的轴,其它轴的相对位置不会改变
  • start:默认为零,表示完整的滚动。会滚动到特定位置。
import numpy as np # 创建了三维的 ndarray a = np.arange(8).reshape(2,2,2) print ('原数组:') print (a) print ('\n') # 将轴 2 滚动到轴 0(宽度到深度) print ('调用 rollaxis 函数:') print (np.rollaxis(a,2)) # 将轴 0 滚动到轴 1:(宽度到高度) print ('\n') print ('调用 rollaxis 函数:') print (np.rollaxis(a,2,1))

【08NumPy学习——数组操作】输出结果:
原数组:
[[[0 1]
[2 3] ]

[ [4 5]
[6 7]]]

调用 rollaxis 函数:
[[[0 2]
[4 6] ]

[ [1 3]
[5 7] ]]

调用 rollaxis 函数:
[[[0 2]
[1 3] ]

[ [4 6]
[5 7]]]
numpy.swapaxes
numpy.swapaxes 函数用于交换数组的两个轴,格式如下:
numpy.swapaxes(arr, axis1, axis2)
参数说明:
  • arr:输入的数组
  • axis1:对应第一个轴的整数
  • axis2:对应第二个轴的整数
import numpy as np # 创建了三维的 ndarray a = np.arange(8).reshape(2,2,2) print ('原数组:') print (a) print ('\n') # 现在交换轴 0(深度方向)到轴 2(宽度方向) print ('调用 swapaxes 函数后的数组:') print (np.swapaxes(a, 2, 0))

输出结果:
原数组:
[[[0 1]
[2 3] ]

[ [4 5]
[6 7]]]

调用 swapaxes 函数后的数组:
[[[0 4]
[2 6] ]

[ [1 5]
[3 7]]]
3. 修改数组维度
函数 描述
broadcast 产生模仿广播的对象
broadcast_to 将数组广播到新形状
expand_dims 扩展数组的形状
squeeze 从数组的形状中删除一维条目
numpy.broadcast
numpy.broadcast 用于模仿广播的对象,它返回一个对象,该对象封装了将一个数组广播到另一个数组的结果。
该函数使用两个数组作为输入参数,如下实例:
import numpy as np x = np.array([[1], [2], [3]]) y = np.array([4, 5, 6]) # 对 y 广播 x b = np.broadcast(x,y) # 它拥有 iterator 属性,基于自身组件的迭代器元组 print ('对 y 广播 x:') r,c = b.iters # Python3.x 为 next(context) ,Python2.x 为 context.next() print (next(r), next(c)) print (next(r), next(c)) print ('\n') # shape 属性返回广播对象的形状 print ('广播对象的形状:') print (b.shape) print ('\n') # 手动使用 broadcast 将 x 与 y 相加 b = np.broadcast(x,y) c = np.empty(b.shape) print ('手动使用 broadcast 将 x 与 y 相加:') print (c.shape) print ('\n') c.flat = [u + v for (u,v) in b] print ('调用 flat 函数:') print (c) print ('\n') # 获得了和 NumPy 内建的广播支持相同的结果 print ('x 与 y 的和:') print (x + y)

输出结果:
对 y 广播 x:
1 4
1 5

广播对象的形状:
(3, 3)

手动使用 broadcast 将 x 与 y 相加:
(3, 3)

调用 flat 函数:
[ [5. 6. 7.]
[6. 7. 8.]
[7. 8. 9.] ]

x 与 y 的和:
[ [5 6 7]
[6 7 8]
[7 8 9] ]
numpy.broadcast_to
numpy.broadcast_to 函数将数组广播到新形状。它在原始数组上返回只读视图。 它通常不连续。 如果新形状不符合 NumPy 的广播规则,该函数可能会抛出ValueError。
numpy.broadcast_to(array, shape, subok)
import numpy as np a = np.arange(4).reshape(1,4) print ('原数组:') print (a) print ('\n') print ('调用 broadcast_to 函数之后:') print (np.broadcast_to(a,(4,4)))

输出结果:
原数组:
[[0 1 2 3]]

调用 broadcast_to 函数之后:
[ [0 1 2 3]
[0 1 2 3]
[0 1 2 3]
[0 1 2 3] ]
numpy.expand_dims
numpy.expand_dims 函数通过在指定位置插入新的轴来扩展数组形状,函数格式如下:
numpy.expand_dims(arr, axis)
参数说明:
  • arr:输入数组
  • axis:新轴插入的位置
import numpy as np x = np.array(([1,2],[3,4])) print ('数组 x:') print (x) print ('\n') y = np.expand_dims(x, axis = 0) print ('数组 y:') print (y) print ('\n') print ('数组 x 和 y 的形状:') print (x.shape, y.shape) print ('\n') # 在位置 1 插入轴 y = np.expand_dims(x, axis = 1) print ('在位置 1 插入轴之后的数组 y:') print (y) print ('\n') print ('x.ndim 和 y.ndim:') print (x.ndim,y.ndim) print ('\n') print ('x.shape 和 y.shape:') print (x.shape, y.shape)

输出结果:
数组 x:
[ [1 2]
[3 4] ]

数组 y:
[[[1 2]
[3 4]]]

数组 x 和 y 的形状:
(2, 2) (1, 2, 2)

在位置 1 插入轴之后的数组 y:
[[[1 2]]

[[3 4]]]

x.ndim 和 y.ndim:
2 3

x.shape 和 y.shape:
(2, 2) (2, 1, 2)
numpy.squeeze
numpy.squeeze 函数从给定数组的形状中删除一维的条目,函数格式如下:
numpy.squeeze(arr, axis)
参数说明:
  • arr:输入数组
  • axis:整数或整数元组,用于选择形状中一维条目的子集
import numpy as np x = np.arange(9).reshape(1,3,3) print ('数组 x:') print (x) print ('\n') y = np.squeeze(x) print ('数组 y:') print (y) print ('\n') print ('数组 x 和 y 的形状:') print (x.shape, y.shape)

输出结果:
数组 x:
[[[0 1 2]
[3 4 5]
[6 7 8]]]

数组 y:
[ [0 1 2]
[3 4 5]
[6 7 8] ]

数组 x 和 y 的形状:
(1, 3, 3) (3, 3)
4. 连接数组
函数 描述
concatenate 连接沿现有轴的数组序列
stack 沿着新的轴加入一系列数组。
hstack 水平堆叠序列中的数组(列方向)
vstack 竖直堆叠序列中的数组(行方向)
numpy.concatenate
numpy.concatenate 函数用于沿指定轴连接相同形状的两个或多个数组,格式如下:
numpy.concatenate((a1, a2, …), axis)
参数说明:
  • a1, a2, …:相同类型的数组
  • axis:沿着它连接数组的轴,默认为 0
import numpy as np a = np.array([[1,2],[3,4]]) print ('第一个数组:') print (a) print ('\n') b = np.array([[5,6],[7,8]]) print ('第二个数组:') print (b) print ('\n') # 两个数组的维度相同 print ('沿轴 0 连接两个数组:') print (np.concatenate((a,b))) print ('\n') print ('沿轴 1 连接两个数组:') print (np.concatenate((a,b),axis = 1))

输出结果:
第一个数组:
[ [1 2]
[3 4] ]

第二个数组:
[ [5 6]
[7 8] ]

沿轴 0 连接两个数组:
[ [1 2]
[3 4]
[5 6]
[7 8] ]

沿轴 1 连接两个数组:
[ [1 2 5 6]
[3 4 7 8] ]
numpy.stack
numpy.stack 函数用于沿新轴连接数组序列,格式如下:
numpy.stack(arrays, axis)
参数说明:
  • arrays相同形状的数组序列
  • axis:返回数组中的轴,输入数组沿着它来堆叠
import numpy as np a = np.array([[1,2],[3,4]]) print ('第一个数组:') print (a) print ('\n') b = np.array([[5,6],[7,8]]) print ('第二个数组:') print (b) print ('\n') print ('沿轴 0 堆叠两个数组:') print (np.stack((a,b),0)) print ('\n') print ('沿轴 1 堆叠两个数组:') print (np.stack((a,b),1))

输出结果:
第一个数组:
[ [1 2]
[3 4] ]

第二个数组:
[ [5 6]
[7 8] ]

沿轴 0 堆叠两个数组:
[[[1 2]
[3 4]]

[[5 6]
[7 8]]]

沿轴 1 堆叠两个数组:
[[[1 2]
[5 6]]

[[3 4]
[7 8]]]
numpy.hstack
numpy.hstack 是 numpy.stack 函数的变体,它通过水平堆叠来生成数组。
import numpy as np a = np.array([[1,2],[3,4]]) print ('第一个数组:') print (a) print ('\n') b = np.array([[5,6],[7,8]]) print ('第二个数组:') print (b) print ('\n') print ('水平堆叠:') c = np.hstack((a,b)) print (c) print ('\n')

输出结果:
第一个数组:
[ [1 2]
[3 4] ]

第二个数组:
[ [5 6]
[7 8] ]

水平堆叠:
[ [1 2 5 6]
[3 4 7 8] ]
numpy.vstack
numpy.vstack 是 numpy.stack 函数的变体,它通过垂直堆叠来生成数组。
import numpy as np a = np.array([[1,2],[3,4]]) print ('第一个数组:') print (a) print ('\n') b = np.array([[5,6],[7,8]]) print ('第二个数组:') print (b) print ('\n') print ('竖直堆叠:') c = np.vstack((a,b)) print (c)

输出结果:
第一个数组:
[ [1 2]
[3 4] ]

第二个数组:
[ [5 6]
[7 8] ]

竖直堆叠:
[ [1 2]
[3 4]
[5 6]
[7 8] ]
5. 分割数组
函数 描述
split 将一个数组分割为多个子数组
hsplit 将一个数组水平分割为多个子数组(按列)
vsplit 将一个数组垂直分割为多个子数组(按行)
numpy.split
numpy.split 函数沿特定的轴将数组分割为子数组,格式如下:
numpy.split(ary, indices_or_sections, axis)
参数说明:
  • ary:被分割的数组
  • indices_or_sections:果是一个整数,就用该数平均切分,如果是一个数组,为沿轴切分的位置(左开右闭)
  • axis:沿着哪个维度进行切向,默认为0,横向切分。为1时,纵向切分
import numpy as np a = np.arange(9) print ('第一个数组:') print (a) print ('\n') print ('将数组分为三个大小相等的子数组:') b = np.split(a,3) print (b) print ('\n') print ('将数组在一维数组中表明的位置分割:') b = np.split(a,[4,7]) print (b)

输出结果:
第一个数组:
[0 1 2 3 4 5 6 7 8]

将数组分为三个大小相等的子数组:
[array([0, 1, 2]), array([3, 4, 5]), array([6, 7, 8])]

将数组在一维数组中表明的位置分割:
[array([0, 1, 2, 3]), array([4, 5, 6]), array([7, 8])]
numpy.hsplit
numpy.hsplit 函数用于水平分割数组,通过指定要返回的相同形状的数组数量来拆分原数组。
import numpy as np harr = np.floor(10 * np.random.random((2, 6))) print ('原array:') print(harr) print ('拆分后:') print(np.hsplit(harr, 3))

输出结果:
原array:
[[4. 7. 6. 3. 2. 6.]
[6. 3. 6. 7. 9. 7.]]
拆分后:
[array([[4., 7.],
[6., 3.]]), array([[6., 3.],
[6., 7.]]), array([[2., 6.],
[9., 7.]])]
numpy.vsplit
numpy.vsplit 沿着垂直轴分割,其分割方式与hsplit用法相同。
import numpy as np a = np.arange(16).reshape(4,4) print ('第一个数组:') print (a) print ('\n') print ('竖直分割:') b = np.vsplit(a,2) print (b)

输出结果:
第一个数组:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]]

竖直分割:
[array([[0, 1, 2, 3],
[4, 5, 6, 7]]), array([[ 8, 9, 10, 11],
[12, 13, 14, 15]])]
6. 数组元素的添加与删除
函数 描述
resize 返回指定形状的新数组
append 将值添加到数组末尾
insert 沿指定轴将值插入到指定下标之前
delete 删掉某个轴的子数组,并返回删除后的新数组
unique 查找数组内的唯一元素
numpy.resize
numpy.resize 函数返回指定大小的新数组。
如果新数组大小大于原始大小,则包含原始数组中的元素的副本
numpy.resize(arr, shape)
参数说明:
  • arr:要修改大小的数组
  • shape:返回数组的新形状
import numpy as np a = np.array([[1,2,3],[4,5,6]]) print ('第一个数组:') print (a) print ('\n') print ('第一个数组的形状:') print (a.shape) print ('\n') b = np.resize(a, (3,2)) print ('第二个数组:') print (b) print ('\n') print ('第二个数组的形状:') print (b.shape) print ('\n') # 要注意 a 的第一行在 b 中重复出现,因为尺寸变大了 print ('修改第二个数组的大小:') b = np.resize(a,(3,3)) print (b)

输出结果:
第一个数组:
[[1 2 3]
[4 5 6]]

第一个数组的形状:
(2, 3)

第二个数组:
[[1 2]
[3 4]
[5 6]]

第二个数组的形状:
(3, 2)

修改第二个数组的大小:
[[1 2 3]
[4 5 6]
[1 2 3]]
numpy.append
numpy.append 函数在数组的末尾添加值。 追加操作会分配整个数组,并把原来的数组复制到新数组中。 此外,输入数组的维度必须匹配否则将生成ValueError。
append 函数返回的始终是一个一维数组。
numpy.append(arr, values, axis=None)
参数说明:
  • arr:输入数组
  • values:要向arr添加的值,需要和arr形状相同(除了要添加的轴)
  • axis:默认为 None。当axis无定义时,是横向加成,返回总是为一维数组!当axis有定义的时候,分别为0和1的时候。当axis有定义的时候,分别为0和1的时候(列数要相同)。当axis为1时,数组是加在右边(行数要相同)。
import numpy as np a = np.array([[1,2,3],[4,5,6]]) print ('第一个数组:') print (a) print ('\n') print ('向数组添加元素:') print (np.append(a, [7,8,9])) print ('\n') print ('沿轴 0 添加元素:') print (np.append(a, [[7,8,9]],axis = 0)) print ('\n') print ('沿轴 1 添加元素:') print (np.append(a, [[5,5,5],[7,8,9]],axis = 1))

输出结果:
第一个数组:
[[1 2 3]
[4 5 6]]

向数组添加元素:
[1 2 3 4 5 6 7 8 9]

沿轴 0 添加元素:
[[1 2 3]
[4 5 6]
[7 8 9]]

沿轴 1 添加元素:
[[1 2 3 5 5 5]
[4 5 6 7 8 9]]
numpy.insert
numpy.insert 函数在给定索引之前,沿给定轴在输入数组中插入值。
如果值的类型转换为要插入,则它与输入数组不同。 插入没有原地的,函数会返回一个新数组。 此外,如果未提供轴,则输入数组会被展开。
numpy.insert(arr, obj, values, axis)
参数说明:
  • arr:输入数组
  • obj:在其之前插入值的索引
  • values:要插入的值
  • axis:沿着它插入的轴,如果未提供,则输入数组会被展开
import numpy as np a = np.array([[1,2],[3,4],[5,6]]) print ('第一个数组:') print (a) print ('\n') print ('未传递 Axis 参数。 在插入之前输入数组会被展开。') print (np.insert(a,3,[11,12])) print ('\n') print ('传递了 Axis 参数。 会广播值数组来配输入数组。') print ('沿轴 0 广播:') print (np.insert(a,1,[11],axis = 0)) print ('\n') print ('沿轴 1 广播:') print (np.insert(a,1,11,axis = 1))

输出结果:
第一个数组:
[[1 2]
[3 4]
[5 6]]

未传递 Axis 参数。 在插入之前输入数组会被展开。
[ 1 2 3 11 12 4 5 6]

传递了 Axis 参数。 会广播值数组来配输入数组。
沿轴 0 广播:
[[ 1 2]
[11 11]
[ 3 4]
[ 5 6]]

沿轴 1 广播:
[[ 1 11 2]
[ 3 11 4]
[ 5 11 6]]
numpy.delete
numpy.delete 函数返回从输入数组中删除指定子数组的新数组。 与 insert() 函数的情况一样,如果未提供轴参数,则输入数组将展开。
Numpy.delete(arr, obj, axis)
参数说明:
  • arr:输入数组
  • obj:可以被切片,整数或者整数数组,表明要从输入数组删除的子数组
  • axis:沿着它删除给定子数组的轴,如果未提供,则输入数组会被展开
import numpy as np a = np.arange(12).reshape(3,4) print ('第一个数组:') print (a) print ('\n') print ('未传递 Axis 参数。 在插入之前输入数组会被展开。') print (np.delete(a,5)) print ('\n') print ('删除第二列:') print (np.delete(a,1,axis = 1)) print ('\n') print ('包含从数组中删除的替代值的切片:') a = np.array([1,2,3,4,5,6,7,8,9,10]) print (np.delete(a, np.s_[::2]))

输出结果:
第一个数组:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]

未传递 Axis 参数。 在插入之前输入数组会被展开。
[ 0 1 2 3 4 6 7 8 9 10 11]

删除第二列:
[[ 0 2 3]
[ 4 6 7]
[ 8 10 11]]

包含从数组中删除的替代值的切片:
[ 2 4 6 8 10]
numpy.unique
numpy.unique 函数用于去除数组中的重复元素。
numpy.unique(arr, return_index, return_inverse, return_counts)
参数说明:
  • arr:输入数组,如果不是一维数组则会展开
  • return_index:如果为true,返回新列表元素在旧列表中的位置(下标),并以列表形式储
  • return_inverse:如果为true,返回旧列表元素在新列表中的位置(下标),并以列表形式储
  • return_counts:如果为true,返回去重数组中的元素在原数组中的出现次数
import numpy as np a = np.array([5,2,6,2,7,5,6,8,2,9]) print ('第一个数组:') print (a) print ('\n') print ('第一个数组的去重值:') u = np.unique(a) print (u) print ('\n') print ('去重数组的索引数组:') u,indices = np.unique(a, return_index = True) print (indices) print ('\n') print ('我们可以看到每个和原数组下标对应的数值:') print (a) print ('\n') print ('去重数组的下标:') u,indices = np.unique(a,return_inverse = True) print (u) print ('\n') print ('下标为:') print (indices) print ('\n') print ('使用下标重构原数组:') print (u[indices]) print ('\n') print ('返回去重元素的重复数量:') u,indices = np.unique(a,return_counts = True) print (u) print (indices)

输出结果:
第一个数组:
[5 2 6 2 7 5 6 8 2 9]

第一个数组的去重值:
[2 5 6 7 8 9]
去重数组的索引数组:
[1 0 2 4 7 9]

我们可以看到每个和原数组下标对应的数值:
[5 2 6 2 7 5 6 8 2 9]

去重数组的下标:
[2 5 6 7 8 9]

下标为:
[1 0 2 0 3 1 2 4 0 5]

使用下标重构原数组:
[5 2 6 2 7 5 6 8 2 9]

返回去重元素的重复数量:
[2 5 6 7 8 9]
[3 2 2 1 1 1]

    推荐阅读