通信线路 题目描述:
n个点,m条双向边,求1到n的路程中价格第k+1大的边的权值最小是多少,如果路径数量小于k+1,则输出0思路1:分层图最短路
【图论|通信线路「分层图最短路」||「二分答案 + 巧妙的建图跑最短路」】求第k+1
大的边,则可以转换成让k
条边的权值是0,再求权值最大值的最小值,考虑分层图最短路,同一层内普通建图,但是层与层之间对应的点建权值为0的边,此外还需要给n * i
到n * (i + 1)
之间建权值为0的边,来解决路径数量不足k+1的情况,然后跑最短路,输出dis[n * (k + 1)]
的值即可
#include
using namespace std;
#define endl '\n'
#define inf 0x3f3f3f3f
#define mod 1000000007
#define m_p(a,b) make_pair(a, b)
#define mem(a,b) memset((a),(b),sizeof(a))
#define io ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0)typedef long long ll;
typedef pair pii;
#define MAX 2000000 + 50
int n, m, k;
int tot;
int head[MAX];
struct ran{
int to, nex, val;
}tr[MAX];
inline void add(int u, int v, int c){
tr[++tot].to = v;
tr[tot].val = c;
tr[tot].nex = head[u];
head[u] = tot;
}int dis[MAX];
bool vis[MAX];
void dijkstra(int s, int t){
priority_queue, greater>q;
mem(dis, inf);
q.push(m_p(0, s));
dis[s] = 0;
while (!q.empty()) {
auto [d, u] = q.top();
q.pop();
if(vis[u])continue;
vis[u] = 1;
for(int i = head[u];
i;
i = tr[i].nex){
int v = tr[i].to;
if(dis[v] > max(tr[i].val, dis[u])){
dis[v] = max(tr[i].val, dis[u]);
q.push(m_p(dis[v], v));
}
}
}
if(dis[t] == inf)cout << -1 << endl;
else cout << dis[t] << endl;
}void work(){
cin >> n >> m >> k;
for(int i = 1, a, b, c;
i <= m;
++i){
cin >> a >> b >> c;
add(a, b, c);
add(b, a, c);
for(int j = 1;
j <= k;
++j){
add(a + (j - 1) * n, b + j * n, 0);
add(b + (j - 1) * n, a + j * n, 0);
add(a + j * n, b + j * n, c);
add(b + j * n, a + j * n, c);
}
}
for(int i = 1;
i <= k;
++i)add(i * n, (i + 1) * n, 0);
dijkstra(1, n * k + n);
}int main(){
io;
work();
return 0;
}
思路2:二分答案 + 最短路
二分权值p
,巧妙的建图:权值大于p
的边的权值为1,权值小于等于p
的权值为0,这样跑最短路得到的就是最少需要几条大于p
的边,拿它和k
进行比较来作为二分的check
函数,非常妙
#include
using namespace std;
#define endl '\n'
#define inf 0x3f3f3f3f
#define mod 1000000007
#define m_p(a,b) make_pair(a, b)
#define mem(a,b) memset((a),(b),sizeof(a))
#define io ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0)typedef long long ll;
typedef pair pii;
#define MAX 300000 + 50
int n, m, k;
int a, b, c;
int tot;
int head[MAX];
struct ran{
int to, nex, val;
}tr[MAX];
inline void add(int u, int v, int c){
tr[++tot].to = v;
tr[tot].val = c;
tr[tot].nex = head[u];
head[u] = tot;
}bool vis[1005];
int dis[1005];
int dijkstra(int s, int mid){
priority_queue, greater >q;
mem(dis, inf);
mem(vis, 0);
q.push(m_p(0, s));
dis[s] = 0;
while (!q.empty()) {
auto [d, u] = q.top();
q.pop();
if(vis[u])continue;
vis[u] = 1;
for(int i = head[u];
i;
i = tr[i].nex){
int v = tr[i].to;
int p = 0;
if(tr[i].val > mid)p = 1;
if(dis[v] > dis[u] + p){
dis[v] = dis[u] + p;
q.push(m_p(dis[v], v));
}
}
}
return dis[n];
}bool judge(int mid){
if(dijkstra(1, mid) <= k)return true;
return false;
}void work(){
cin >> n >> m >> k;
for(int i = 1;
i <= m;
++i){
cin >> a >> b >> c;
add(a, b, c);
add(b, a, c);
}int l = 0, r = 1000001;
while (l <= r) {
int mid = (l + r) / 2;
if(judge(mid))r = mid - 1;
else l = mid + 1;
}
if(dis[n] == inf)cout << -1 << endl;
else cout << l << endl;
}int main(){
io;
work();
return 0;
}
推荐阅读
- 学习记录|393. UTF-8 编码验证
- leetcode|leetcode 543(二叉树的直径)
- Codeforces|Fault-tolerant Network(连通块/贪心)
- 算法|K-means,K-means++方法详解-机器学习分类问题常见算法
- 算法|PyTorch中的squeeze()和unsqueeze()详解与应用案例
- 机器学习|bagging && boosting && stacking 集成学习
- 算法|Fractal解题笔记
- 动态规划|符环 解题笔记
- leetcode刷题记录|反转字符串——LC344题