第一题
标题:贪吃蛇长度
+-------------------------------------------------+
||
|H##########|
|###|
|###|
|#######|
|#####|
|######@#####|
|#######|
|#####|
|####@#######@#####|
|#####|
| T##########|
| ######## ##|
| ######################|
|####|
|#####################@##########|
|####|
|###########################|
+-------------------------------------------------+
小明在爷爷的私人收藏馆里找到一台老式电脑。居然没有图形界面,只能用控制台编程。
经过小明的一阵摸索,神奇地设计出了控制台上的贪食蛇游戏。
如上图,是游戏时画面截图。
其中,H表示蛇头,T表示蛇尾。#表示蛇的身体,@表示身体交叉重叠的地方。
你能说出现在的贪吃蛇长度是多少吗?
其实,只要数出#的数目算1,数出@的数目,算2,再加上头尾各算1就计算好了。
人工数一下?太累眼睛了,聪明的你为什么不让计算机帮忙呢?
本题的要求就是: 请填写上图中贪食蛇的长度是多少?
注意:需要提交的是一个整数,不要添加任何多余内容(比如说明或注释)
答案:188
第二题
标题:兴趣小组
为丰富同学们的业余文化生活,某高校学生会创办了3个兴趣小组
(以下称A组,B组,C组)。
每个小组的学生名单分别在【A.txt】,【B.txt】和【C.txt】中。
每个文件中存储的是学生的学号。
由于工作需要,我们现在想知道:
既参加了A组,又参加了B组,但是没有参加C组的同学一共有多少人?
请你统计该数字并通过浏览器提交答案。
注意:答案是一个整数,不要提交任何多余的内容。
--------------------
笨笨有话说:
哇塞!数字好多啊!一眼望过去就能发现相同的,好像没什么指望。
不过,可以排序啊,要是每个文件都是有序的,那就好多了。
歪歪有话说:
排什么序啊,这么几行数字对计算机不是太轻松了吗?
我看着需求怎么和中学学过的集合很像啊.....
我的代码:
#include using namespace std;
int main()
{
int a[152]={
12894792, 92774113, 59529208, 22962224, 2991600, 83340521, 87365045,
40818286, 16400628, 39475245, 55933381, 76940287, 61366748, 95631228,
17102313, 50682833, 61562613, 87002524, 83062019, 51743442, 61977890,
32010762, 69680621, 87179571, 81761697, 32364296, 7833271, 36198035,
26588918, 84046668, 43059468, 73191775, 56794101, 454780, 11141030,
10008994, 35072237, 44945158, 53959980, 75758119, 18560273, 35801494,
42102550, 22496415, 3981786, 34593672, 13074905, 07733442, 42374678,
23452507, 98586743, 30771281, 17703080, 52123562, 5898131, 56698981,
90758589, 18238802, 18217979, 4511837, 75682969, 31135682, 55379006,
42224598, 98263070, 40228312, 28924663, 11580163, 25686441, 45944028,
96731602, 53675990, 3854194, 14858183, 16866794, 40677007, 73141512,
32317341, 56641725, 43123040, 15201174, 62389950, 72887083, 76860787,
61046319, 6923746, 17874548, 46028629, 10577743, 48747364, 5328780,
59855415, 60965266, 20592606, 14471207, 70896866, 46938647, 33575820,
53426294, 56093931, 51326542, 94050481, 80114017, 33010503, 72971538,
22407422, 17305672, 78974338, 93209260, 83461794, 41247821, 26118061,
10657376, 42198057, 15338224, 50284714, 32232841, 26716521, 76048344,
23676625, 62897700, 69296551, 59653393, 38704390, 48481614, 69782897,
26850668, 37471053, 88720989, 51010849, 94951571, 60024611, 29808329,
70377786, 13899299, 9683688, 58218284, 46792829, 97221709, 45286643,
48158629, 57367208, 26903401, 76900414, 87927040, 9926730, 1508757,
15101101, 62491840, 43802529,
};
int b[251]={
44894050, 34662733, 44141729, 92774113, 99208727, 91919833, 23727681,
10003409, 55933381, 54443275, 13584702, 96523685, 50682833, 61562613,
62380975, 20311684, 93200452, 23101945, 42192880, 28992561, 18460278,
19186537, 58465301, 01111066, 62680429, 23721241, 20277631, 91708977,
57514737, 3981786, 81541612, 07346443, 93154608, 19709455, 37446968,
17703080, 72378958, 66200696, 30610382, 89586343, 33152171, 67040930,
35696683, 63242065, 99948221, 96233367, 52593493, 98263070, 1418023,
74816705, 89375940, 58405334, 96731602, 84089545, 16866794, 94737626,
01673442, 70548494, 13638168, 8163691, 11106566, 64375392, 40267902,
897705, 56447313, 54532235, 94738425, 66642634, 83219544, 40546096,
66924991, 20592606, 96037590, 73434467, 70896866, 91025618, 57892091,
8487641, 32500082, 84412833, 23311447, 38380409, 79957822, 72971538,
69645784, 91863314, 73099909, 93209260, 83461794, 81378487, 30423273,
22233715, 32232841, 26716521, 03511221, 29196547, 58263562, 56233305,
52547525, 55812835, 87253244, 52484232, 80837360, 94098464, 52028151,
53267501, 66381929, 84381316, 59788467, 9683688, 67082008, 71605255,
80654064, 21434307, 45286643, 76556656, 82465821, 57367208, 79218980,
48460468, 59170479, 46046391, 43043164, 96544490, 83340521, 70837892,
18926791, 40818286, 28936302, 11489524, 51031183, 73860337, 13241219,
9025448, 10718828, 76360986, 26031606, 76558053, 97726139, 46473415,
48406387, 23625539, 86756012, 35164187, 49161302, 78082834, 35072237,
8602486, 29815841, 56562216, 77684187, 81751704, 20160464, 50407962,
27786415, 19893526, 934129, 37759498, 52636463, 25666982, 43262852,
38393436, 2581136, 29323250, 56950657, 5898131, 95286262, 75574581,
54057961, 6703896, 90758589, 57782642, 34492535, 41919697, 6395464,
10993500, 81212949, 34017532, 69569396, 99009936, 57129610, 67401593,
71044018, 62076698, 29533873, 71936325, 86874388, 26545032, 35695544,
30433724, 53127345, 72887083, 25390873, 63711546, 6923746, 27783723,
33199575, 35929698, 16491251, 18276792, 62744775, 92096155, 06336570,
56141974, 73007273, 31416832, 00171057, 64176982, 46938647, 58460388,
69972026, 73724304, 27435484, 51568616, 15531822, 47788699, 11818851,
41594694, 83561325, 43107163, 56965375, 10557343, 26118061, 74650126,
90076467, 10657376, 49901436, 03425162, 61164599, 15797769, 5427896,
14444084, 36795868, 18079449, 59653393, 72942548, 06763077, 33895610,
94892653, 12085268, 65174140, 79567366, 23020126, 74290047, 13498869,
21696323, 27724594, 54941003, 38229841, 7050068,
};
int c[251] = {
13404901, 39952424, 47847739, 94939581, 13809950, 70966043, 11161555,
17102313, 47079425, 50682833, 74154313, 61562613, 93200452, 37103342,
18479435, 32502597, 36198035, 54210010, 73191775, 48358178, 85544503,
5996766, 54651623, 52113220, 27465181, 23871783, 22496415, 54107041,
65899605, 56528700, 82671109, 61176034, 42374678, 51612628, 63329997,
56591652, 04552733, 12789324, 89586343, 51935014, 38611966, 43916409,
70996050, 98263070, 1418023, 65345049, 21734275, 76846198, 71506230,
833171, 67128139, 41367555, 64769510, 44010700, 16475199, 93164325,
9386162, 95324041, 80688223, 67629139, 79552617, 76219736, 50368644,
45096021, 54972488, 63779011, 28862942, 73145521, 74078605, 66924991,
12806850, 02171001, 70896866, 73434467, 8487641, 44415025, 32500082,
84412833, 83896188, 52243759, 49191410, 38744339, 48079796, 44937032,
06267501, 81866886, 38575984, 25978688, 78974338, 41247821, 12356966,
64842303, 79127158, 2366944, 68000570, 12426275, 96409230, 705972,
8266503, 83820884, 8831807, 43273308, 23216105, 29196547, 95160161,
05553537, 52182214, 32641346, 91553427, 24436506, 77433749,1979664,
52028151, 88985343, 1761499, 76203088, 63237368, 23405334, 59788467,
9683688, 67755443, 29946533, 12053603, 437479, 15200030, 45286643,
93537527, 82465821, 57367208, 53899751, 15354933, 97760830, 68933762,
80220545, 1892750, 39868288, 21524323, 69716610, 65083815, 78048499,
3227391, 83340521, 87365045, 71720254, 51031183, 89168555, 8503028,
37086236, 25103057, 87002524, 22808816, 80928090, 90741678, 15993372,
99117082, 49938176, 21755083, 86903426, 87830263, 53959980, 75758119,
59781354, 58679691, 25666982, 56307643, 47180521, 62776522, 78136608,
44882734, 90758589, 8075999, 66303819, 23480347, 11580163, 87080118,
18329165, 92514163, 89404632, 92377859, 3912329, 17499963, 59699979,
79876366, 63894807, 37857001, 86003935, 90087123, 29433345, 80298948,
61531153, 61046319, 37839841, 19421134, 48747364, 35196916, 62484573,
59907079, 36845702, 21631642, 72739317, 26283700, 80114017, 76639390,
29154110, 35159758, 47788699, 11818851, 56520669, 36396767, 36031167,
83817428, 10657376, 90076467, 14676452, 11024560, 16327605, 76048344,
14444084, 95452011, 99612346, 65172562, 84813675, 88618282, 38704390,
27998014, 63859011, 33787505, 60024611, 16229880, 13899299, 35240335,
29173227, 45036451, 66177893, 82658333, 43100730, 44520187, 74290047,
85013538, 9926730, 27724594, 95148523, 20503000, 64390907, 26006953,
98116293, 97457666, 29017396, 04634371, 70791589,
};
int d[251],y=0;
for(int i=0;
i<151;
i++)
{
for(int j=0;
j<250;
j++)
{
if(a[i]==b[j])
{
d[y++]=a[i];
// break;
}
}
}
int sum = 0;
int ok=0;
//printf("y=%d\n",y);
for(int i=0;
i
答案:20
第三题
标题:算式900
小明的作业本上有道思考题:
看下面的算式:
(□□□□-□□□□)*□□=900
其中的小方块代表0~9的数字,这10个方块刚好包含了0~9中的所有数字。
注意:0不能作为某个数字的首位。
小明经过几天的努力,终于做出了答案!如下:
(5012-4987)*36=900
用计算机搜索后,发现还有另外一个解,本题的任务就是:请你算出这另外的一个解。
注意:提交的格式需要与示例严格一致;
括号及运算符号不要用中文输入法;
整个算式中不能包含空格。
注意:机器评卷,不要填写任何多余的内容,比如说明文字。
我的代码:
#include using namespace std;
int main()
{
for(int i=1;
i<=9;
i++)
{
for(int b=0;
b<=9;
b++)
{
for(int c=0;
c<=9;
c++)
{
for(int d=0;
d<=9;
d++)
{
for(int e=0;
e<=9;
e++)
{
for(int f=0;
f<=9;
f++)
{
for(int g=0;
g<=9;
g++)
{
for(int h=0;
h<=9;
h++)
{
for(int j=0;
j<=9;
j++)
{
for(int k=0;
k<=9;
k++)
{
if(((i*1000+b*100+c*10+d)-(e*1000+f*100+g*10+h))*(j*10+k)==900)
{
if((i!=b)&&(i!=c)&&(i!=d)&&(i!=e)&&(i!=f)&&(i!=g)&&(i!=h)&&(i!=j)&&(i!=k))
{
if((b!=c)&&(b!=d)&&(b!=e)&&(b!=f)&&(b!=g)&&(b!=h)&&(b!=j)&&(b!=k))
{
if((c!=d)&&(c!=e)&&(c!=f)&&(c!=g)&&(c!=h)&&(c!=j)&&(c!=k))
{
if((d!=e)&&(d!=f)&&(d!=g)&&(d!=h)&&(d!=j)&&(d!=k))
{
if((e!=f)&&(e!=g)&&(e!=h)&&(e!=j)&&(e!=k))
{
if((f!=g)&&(f!=h)&&(f!=j)&&(f!=k))
{
if((g!=h)&&(g!=j)&&(g!=k))
{
if((h!=j)&&(h!=k))
{
if(j!=k)
{
printf("%d %d %d %d %d %d %d %d %d %d\n",i,b,c,d,e,f,g,h,j,k);
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
return 0;
}
答案:6 0 4 8 5 9 7 3 1 2
第四题
标题:承压计算
X星球的高科技实验室中整齐地堆放着某批珍贵金属原料。
每块金属原料的外形、尺寸完全一致,但重量不同。
金属材料被严格地堆放成金字塔形。
7
5 8
7 8 8
9 2 7 2
8 1 4 9 1
8 1 8 8 4 1
7 9 6 1 4 5 4
5 6 5 5 6 9 5 6
5 5 4 7 9 3 5 5 1
7 5 7 9 7 4 7 3 3 1
4 6 4 5 5 8 8 3 2 4 3
1 1 3 3 1 6 6 5 5 4 4 2
9 9 9 2 1 9 1 9 2 9 5 7 9
4 3 3 7 7 9 3 6 1 3 8 8 3 7
3 6 8 1 5 3 9 5 8 3 8 1 8 3 3
8 3 2 3 3 5 5 8 5 4 2 8 6 7 6 9
8 1 8 1 8 4 6 2 2 1 7 9 4 2 3 3 4
2 8 4 2 2 9 9 2 8 3 4 9 6 3 9 4 6 9
7 9 7 4 9 7 6 6 2 8 9 4 1 8 1 7 2 1 6
9 2 8 6 4 2 7 9 5 4 1 2 5 1 7 3 9 8 3 3
5 2 1 6 7 9 3 2 8 9 5 5 6 6 6 2 1 8 7 9 9
6 7 1 8 8 7 5 3 6 5 4 7 3 4 6 7 8 1 3 2 7 4
2 2 6 3 5 3 4 9 2 4 5 7 6 6 3 2 7 2 4 8 5 5 4
7 4 4 5 8 3 3 8 1 8 6 3 2 1 6 2 6 4 6 3 8 2 9 6
1 2 4 1 3 3 5 3 4 9 6 3 8 6 5 9 1 5 3 2 6 8 8 5 3
2 2 7 9 3 3 2 8 6 9 8 4 4 9 5 8 2 6 3 4 8 4 9 3 8 8
7 7 7 9 7 5 2 7 9 2 5 1 9 2 6 5 3 9 3 5 7 3 5 4 2 8 9
7 7 6 6 8 7 5 5 8 2 4 7 7 4 7 2 6 9 2 1 8 2 9 8 5 7 3 6
5 9 4 5 5 7 5 5 6 3 5 3 9 5 8 9 5 4 1 2 6 1 4 3 5 3 2 4 1
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
其中的数字代表金属块的重量(计量单位较大)。
最下一层的X代表30台极高精度的电子秤。
假设每块原料的重量都十分精确地平均落在下方的两个金属块上,
最后,所有的金属块的重量都严格精确地平分落在最底层的电子秤上。
电子秤的计量单位很小,所以显示的数字很大。
工作人员发现,其中读数最小的电子秤的示数为:2086458231
请你推算出:读数最大的电子秤的示数为多少?
注意:需要提交的是一个整数,不要填写任何多余的内容。
--------------------------------------------
笨笨有话说:
不断的除2,加到下面,除2,加到下面,.... 不会浮点精度溢出吧?
歪歪有话说:
怕除不开还不好办, 把每个数字扩大一定的倍数不就好了。
第五题
标题: 杨辉三角
杨辉三角也叫帕斯卡三角,在很多数量关系中可以看到,十分重要。
第0行:1
第1行:1 1
第2行:1 2 1
第3行:1 3 3 1
第4行:1 4 6 4 1
....
两边的元素都是1, 中间的元素是左上角的元素与右上角的元素和。
我们约定,行号,列号都从0计数。
所以: 第6行的第2个元素是15,第3个元素是20
直观地看,需要开辟一个二维数组,其实一维数组也可以胜任。
如下程序就是用一维数组“腾挪”的解法。
// 杨辉三角的第row行,第col列
long long f(int row, int col){
if(row<2) return 1;
if(col==0) return 1;
if(col==row) return 1;
long long a[1024];
a[0]=1;
a[1]=1;
int p = 2;
int q;
while(p<=row){
a[p] = 1;
for( _q=p-1;q>0; q--; __ ) a[q] = a[q] + a[q-1]; //填空
p++;
}
return a[col];
}
int main()
{
printf("%d\n", f(6,2));
printf("%d\n", f(6,3));
printf("%lld\n", f(40,20));
return 0;
}
请仔细分析源码,并完成划线部分缺少的代码。
注意:只提交缺少的代码,不要提交已有的代码和符号。也不要提交说明性文字。
第六题
标题:最大公共子串
最大公共子串长度问题就是:
求两个串的所有子串中能够匹配上的最大长度是多少。
比如:"abcdkkk" 和 "baabcdadabc",
可以找到的最长的公共子串是"abcd",所以最大公共子串长度为4。
下面的程序是采用矩阵法进行求解的,这对串的规模不大的情况还是比较有效的解法。
请分析该解法的思路,并补全划线部分缺失的代码。
#include
#include
#define N 256
int f(const char* s1, const char* s2)
{
int a[N][N];
int len1 = strlen(s1);
int len2 = strlen(s2);
int i,j;
memset(a,0,sizeof(int)*N*N);
int max = 0;
for(i=1; i<=len1; i++){
for(j=1; j<=len2; j++){
if(s1[i-1]==s2[j-1]) {
a[i][j] = __________________________; //填空
if(a[i][j] > max) max = a[i][j];
}
}
}
return max;
}
int main()
{
printf("%d\n", f("abcdkkk", "baabcdadabc"));
return 0;
}
注意:只提交缺少的代码,不要提交已有的代码和符号。也不要提交说明性文字。
答案:a[i-1][j-1]+1
第七题
标题: Excel地址
Excel单元格的地址表示很有趣,它使用字母来表示列号。
比如,
A表示第1列,
B表示第2列,
Z表示第26列,
AA表示第27列,
AB表示第28列,
BA表示第53列,
....
当然Excel的最大列号是有限度的,所以转换起来不难。
如果我们想把这种表示法一般化,可以把很大的数字转换为很长的字母序列呢?
本题目既是要求对输入的数字, 输出其对应的Excel地址表示方式。
例如,
输入:
26
则程序应该输出:
Z
再例如,
输入:
2054
则程序应该输出:
BZZ
我们约定,输入的整数范围[1,2147483647]
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗< 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
------------------------------
笨笨有话说:
这有点像进制关系,又不完全是。好像末2位是以1当26,末3位是以1当26*26
歪歪有话说:
要是从字母序列转数字还好点,倒过来有点麻烦,不过计算机跑得快啊。
我的代码:
#include using namespace std;
int main()
{
int n;
int p,q;
int a[1005];
int y=0;
cin>>n;
p=n;
q=0;
while(p>=1)
{
q = p%26;
if(q==0)
{
q=26;
}S
a[y++] = q;
p = (p-q)/26;
}
for(int i=y-1;
i>=0;
i--)
{
printf("%c",a[i]+'A'-1);
}
printf("\n");
return 0;
}
第八题
标题:九宫幻方
小明最近在教邻居家的小朋友小学奥数,而最近正好讲述到了三阶幻方这个部分,三阶幻方指的是将1~9不重复的填入一个3*3的矩阵当中,使得每一行、每一列和每一条对角线的和都是相同的。
三阶幻方又被称作九宫格,在小学奥数里有一句非常有名的口诀:“二四为肩,六八为足,左三右七,戴九履一,五居其中”,通过这样的一句口诀就能够非常完美的构造出一个九宫格来。
4 9 2
3 5 7
8 1 6
有意思的是,所有的三阶幻方,都可以通过这样一个九宫格进行若干镜像和旋转操作之后得到。现在小明准备将一个三阶幻方(不一定是上图中的那个)中的一些数抹掉,交给邻居家的小朋友来进行还原,并且希望她能够判断出究竟是不是只有一个解。
而你呢,也被小明交付了同样的任务,但是不同的是,你需要写一个程序~
输入格式:
输入仅包含单组测试数据。
每组测试数据为一个3*3的矩阵,其中为0的部分表示被小明抹去的部分。
对于100%的数据,满足给出的矩阵至少能还原出一组可行的三阶幻方。
输出格式:
如果仅能还原出一组可行的三阶幻方,则将其输出,否则输出“Too Many”(不包含引号)。
样例输入
0 7 2
0 5 0
0 3 0
样例输出
6 7 2
1 5 9
8 3 4
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗< 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
--------------
笨笨有话说:
我最喜欢这类题目了。既然九宫幻方一共也没有多少,我就不辞辛劳地一个一个写出来好了。
也不能太过分,好歹用个数组。
第九题
标题:拉马车
小的时候,你玩过纸牌游戏吗?
有一种叫做“拉马车”的游戏,规则很简单,却很吸引小朋友。
其规则简述如下:
假设参加游戏的小朋友是A和B,游戏开始的时候,他们得到的随机的纸牌序列如下:
A方:[K, 8, X, K, A, 2, A, 9, 5, A]
B方:[2, 7, K, 5, J, 5, Q, 6, K, 4]
其中的X表示“10”,我们忽略了纸牌的花色。
从A方开始,A、B双方轮流出牌。
当轮到某一方出牌时,他从自己的纸牌队列的头部拿走一张,放到桌上,并且压在最上面一张纸牌上(如果有的话)。
此例中,游戏过程:
A出K,B出2,A出8,B出7,A出X,此时桌上的序列为:
K,2,8,7,X
当轮到B出牌时,他的牌K与桌上的纸牌序列中的K相同,则把包括K在内的以及两个K之间的纸牌都赢回来,放入自己牌的队尾。注意:为了操作方便,放入牌的顺序是与桌上的顺序相反的。
此时,A、B双方的手里牌为:
A方:[K, A, 2, A, 9, 5, A]
B方:[5, J, 5, Q, 6, K, 4, K, X, 7, 8, 2, K]
赢牌的一方继续出牌。也就是B接着出5,A出K,B出J,A出A,B出5,又赢牌了。
5,K,J,A,5
此时双方手里牌:
A方:[2, A, 9, 5, A]
B方:[Q, 6, K, 4, K, X, 7, 8, 2, K, 5, A, J, K, 5]
注意:更多的时候赢牌的一方并不能把桌上的牌都赢走,而是拿走相同牌点及其中间的部分。但无论如何,都是赢牌的一方继续出牌,有的时候刚一出牌又赢了,也是允许的。
当某一方出掉手里最后一张牌,但无法从桌面上赢取牌时,游戏立即结束。
对于本例的初始手牌情况下,最后A会输掉,而B最后的手里牌为:
9K2A62KAX58K57KJ5
本题的任务就是已知双方初始牌序,计算游戏结束时,赢的一方手里的牌序。当游戏无法结束时,输出-1。
输入为2行,2个串,分别表示A、B双方初始手里的牌序列。
输出为1行,1个串,表示A先出牌,最后赢的一方手里的牌序。
例如,
输入:
96J5A898QA
6278A7Q973
则程序应该输出:
2J9A7QA6Q6889977
再比如,
输入:
25663K6X7448
J88A5KJXX45A
则程序应该输出:
6KAJ458KXAX885XJ645
我们约定,输入的串的长度不超过30
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗< 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
----------------------------
笨笨有话说:
不断删除前边的,又要后边添加.... 如果用数组,需要开一个大点的,请佛祖保佑在游戏结束前,不会用到数组的边缘。
歪歪有话说:
反正串也不长,不如每次操作都返回一个新的串。
默默有话说:
我一般都不吱声,这是典型的队列结构,动态数组最好,没有?自己造一个呗!
第十题
标题:图形排版
小明需要在一篇文档中加入 N 张图片,其中第 i 张图片的宽度是 Wi,高度是 Hi。
假设纸张的宽度是 M,小明使用的文档编辑工具会用以下方式对图片进行自动排版:
1. 该工具会按照图片顺序,在宽度 M 以内,将尽可能多的图片排在一行。该行的高度是行内最高的图片的高度。例如在 M=10 的纸张上依次打印 3x4, 2x2, 3x3 三张图片,则效果如下图所示,这一行高度为4。(分割线以上为列标尺,分割线以下为排版区域;数字组成的矩形为第x张图片占用的版面)
0123456789
----------
111
111333
11122333
11122333
2. 如果当前行剩余宽度大于0,并且小于下一张图片,则下一张图片会按比例缩放到宽度为当前行剩余宽度(高度向上取整),然后放入当前行。例如再放入一张4x9的图片,由于剩余宽度是2,这张图片会被压缩到2x5,再被放入第一行的末尾。此时该行高度为5:
0123456789
----------
44
11144
11133344
1112233344
1112233344
3. 如果当前行剩余宽度为0,该工具会从下一行开始继续对剩余的图片进行排版,直到所有图片都处理完毕。此时所有行的总高度和就是这 N 张图片的排版高度。例如再放入11x1, 5x5, 3x4 的图片后,效果如下图所示,总高度为11:
0123456789
----------
44
11144
11133344
1112233344
1112233344
5555555555
66666
66666777
66666777
66666777
66666777
现在由于排版高度过高,图片的先后顺序也不能改变,小明只好从 N 张图片中选择一张删除掉以降低总高度。他希望剩余N-1张图片按原顺序的排版高度最低,你能求出最低高度是多少么?
输入:
第一行包含两个整数 M 和 N,分别表示纸张宽度和图片的数量。
接下来 N 行,每行2个整数Wi, Hi,表示第 i 个图大小为 Wi*Hi。
对于30%的数据,满足1<=N<=1000
对于100%的数据,满足1<=N<=100000,1<=M, Wi, Hi<=100
输出:
一个整数,表示在删除掉某一张图片之后,排版高度最少能是多少。
样例输入:
4 3
2 2
2 3
2 2
样例输出:
2
另一个示例,
样例输入:
2 10
4 4
4 3
1 3
4 5
2 1
2 3
5 4
5 3
1 5
2 4
样例输出:
17
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗< 2000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
这里面还有没有题解的题目,稍后会更新。
【蓝桥杯|第八届蓝桥杯大赛试题及题解】
推荐阅读
- 蓝桥杯|2021年第十二届蓝桥杯省赛Python组(真题+解析+代码)(货物摆放)
- 蓝桥杯|蓝桥杯大赛 青少年创意编程 第十二届 C++组
- 蓝桥杯|蓝桥杯——阶乘计算
- 蓝桥杯|蓝桥杯 试题 基础练习 杨辉三角形
- Python算法|Python算法学习: 蓝桥杯官方练习系统VIP题库真题代码讲解(持续更新)
- 算法|2020年10月份蓝桥杯省赛B组C++题解
- 蓝桥杯|2019蓝桥杯省赛C++A组真题解析
- 竞赛习题|蓝桥杯第十二届个人省赛C/C++B组(欢迎大家在底部评论留下自己疑问)
- 蓝桥杯|2018年蓝桥杯省赛 C++ B组