手把手教你使用TensorFlow2实现RNN

目录

  • 概述
  • 权重共享
  • 计算过程:
  • 案例
    • 数据集
    • RNN 层
    • 获取数据
  • 完整代码

    概述 RNN (Recurrent Netural Network) 是用于处理序列数据的神经网络. 所谓序列数据, 即前面的输入和后面的输入有一定的联系.
    手把手教你使用TensorFlow2实现RNN
    文章图片


    权重共享 传统神经网络:

    手把手教你使用TensorFlow2实现RNN
    文章图片


    【手把手教你使用TensorFlow2实现RNN】RNN:

    手把手教你使用TensorFlow2实现RNN
    文章图片


    RNN 的权重共享和 CNN 的权重共享类似, 不同时刻共享一个权重, 大大减少了参数数量.

    计算过程: 手把手教你使用TensorFlow2实现RNN
    文章图片


    计算状态 (State)

    手把手教你使用TensorFlow2实现RNN
    文章图片

    计算输出:

    手把手教你使用TensorFlow2实现RNN
    文章图片


    案例
    数据集
    IBIM 数据集包含了来自互联网的 50000 条关于电影的评论, 分为正面评价和负面评价.

    RNN 层
    class RNN(tf.keras.Model):def __init__(self, units):super(RNN, self).__init__()# 初始化 [b, 64] (b 表示 batch_size)self.state0 = [tf.zeros([batch_size, units])]self.state1 = [tf.zeros([batch_size, units])]# [b, 80] => [b, 80, 100]self.embedding = tf.keras.layers.Embedding(total_words, embedding_len, input_length=max_review_len)self.rnn_cell0 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)self.rnn_cell1 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)# [b, 80, 100] => [b, 64] => [b, 1]self.out_layer = tf.keras.layers.Dense(1)def call(self, inputs, training=None):""":param inputs: [b, 80]:param training::return:"""state0 = self.state0state1 = self.state1x = self.embedding(inputs)for word in tf.unstack(x, axis=1):out0, state0 = self.rnn_cell0(word, state0, training=training)out1, state1 = self.rnn_cell1(out0, state1, training=training)# [b, 64] -> [b, 1]x = self.out_layer(out1)prob = tf.sigmoid(x)return prob


    获取数据
    def get_data():# 获取数据(X_train, y_train), (X_test, y_test) = tf.keras.datasets.imdb.load_data(num_words=total_words)# 更改句子长度X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_review_len)X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_review_len)# 调试输出print(X_train.shape, y_train.shape)# (25000, 80) (25000,)print(X_test.shape, y_test.shape)# (25000, 80) (25000,)# 分割训练集train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train))train_db = train_db.shuffle(10000).batch(batch_size, drop_remainder=True)# 分割测试集test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test))test_db = test_db.batch(batch_size, drop_remainder=True)return train_db, test_db


    完整代码
    import tensorflow as tfclass RNN(tf.keras.Model):def __init__(self, units):super(RNN, self).__init__()# 初始化 [b, 64]self.state0 = [tf.zeros([batch_size, units])]self.state1 = [tf.zeros([batch_size, units])]# [b, 80] => [b, 80, 100]self.embedding = tf.keras.layers.Embedding(total_words, embedding_len, input_length=max_review_len)self.rnn_cell0 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)self.rnn_cell1 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)# [b, 80, 100] => [b, 64] => [b, 1]self.out_layer = tf.keras.layers.Dense(1)def call(self, inputs, training=None):""":param inputs: [b, 80]:param training::return:"""state0 = self.state0state1 = self.state1x = self.embedding(inputs)for word in tf.unstack(x, axis=1):out0, state0 = self.rnn_cell0(word, state0, training=training)out1, state1 = self.rnn_cell1(out0, state1, training=training)# [b, 64] -> [b, 1]x = self.out_layer(out1)prob = tf.sigmoid(x)return prob# 超参数total_words = 10000# 文字数量max_review_len = 80# 句子长度embedding_len = 100# 词维度batch_size = 1024# 一次训练的样本数目learning_rate = 0.0001# 学习率iteration_num = 20# 迭代次数optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)# 优化器loss = tf.losses.BinaryCrossentropy(from_logits=True)# 损失model = RNN(64)# 调试输出summarymodel.build(input_shape=[None, 64])print(model.summary())# 组合model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"])def get_data():# 获取数据(X_train, y_train), (X_test, y_test) = tf.keras.datasets.imdb.load_data(num_words=total_words)# 更改句子长度X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_review_len)X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_review_len)# 调试输出print(X_train.shape, y_train.shape)# (25000, 80) (25000,)print(X_test.shape, y_test.shape)# (25000, 80) (25000,)# 分割训练集train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train))train_db = train_db.shuffle(10000).batch(batch_size, drop_remainder=True)# 分割测试集test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test))test_db = test_db.batch(batch_size, drop_remainder=True)return train_db, test_dbif __name__ == "__main__":# 获取分割的数据集train_db, test_db = get_data()# 拟合model.fit(train_db, epochs=iteration_num, validation_data=https://www.it610.com/article/test_db, validation_freq=1)

    输出结果:
    Model: "rnn"
    _________________________________________________________________
    Layer (type) Output Shape Param #
    =================================================================
    embedding (Embedding) multiple 1000000
    _________________________________________________________________
    simple_rnn_cell (SimpleRNNCe multiple 10560
    _________________________________________________________________
    simple_rnn_cell_1 (SimpleRNN multiple 8256
    _________________________________________________________________
    dense (Dense) multiple 65
    =================================================================
    Total params: 1,018,881
    Trainable params: 1,018,881
    Non-trainable params: 0
    _________________________________________________________________
    None
    (25000, 80) (25000,)
    (25000, 80) (25000,)
    Epoch 1/20
    2021-07-10 17:59:45.150639: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
    24/24 [==============================] - 12s 294ms/step - loss: 0.7113 - accuracy: 0.5033 - val_loss: 0.6968 - val_accuracy: 0.4994
    Epoch 2/20
    24/24 [==============================] - 7s 292ms/step - loss: 0.6951 - accuracy: 0.5005 - val_loss: 0.6939 - val_accuracy: 0.4994
    Epoch 3/20
    24/24 [==============================] - 7s 297ms/step - loss: 0.6937 - accuracy: 0.5000 - val_loss: 0.6935 - val_accuracy: 0.4994
    Epoch 4/20
    24/24 [==============================] - 8s 316ms/step - loss: 0.6934 - accuracy: 0.5001 - val_loss: 0.6933 - val_accuracy: 0.4994
    Epoch 5/20
    24/24 [==============================] - 7s 301ms/step - loss: 0.6934 - accuracy: 0.4996 - val_loss: 0.6933 - val_accuracy: 0.4994
    Epoch 6/20
    24/24 [==============================] - 8s 334ms/step - loss: 0.6932 - accuracy: 0.5000 - val_loss: 0.6932 - val_accuracy: 0.4994
    Epoch 7/20
    24/24 [==============================] - 10s 398ms/step - loss: 0.6931 - accuracy: 0.5006 - val_loss: 0.6932 - val_accuracy: 0.4994
    Epoch 8/20
    24/24 [==============================] - 9s 382ms/step - loss: 0.6930 - accuracy: 0.5006 - val_loss: 0.6931 - val_accuracy: 0.4994
    Epoch 9/20
    24/24 [==============================] - 8s 322ms/step - loss: 0.6924 - accuracy: 0.4995 - val_loss: 0.6913 - val_accuracy: 0.5240
    Epoch 10/20
    24/24 [==============================] - 8s 321ms/step - loss: 0.6812 - accuracy: 0.5501 - val_loss: 0.6655 - val_accuracy: 0.5767
    Epoch 11/20
    24/24 [==============================] - 8s 318ms/step - loss: 0.6381 - accuracy: 0.6896 - val_loss: 0.6235 - val_accuracy: 0.7399
    Epoch 12/20
    24/24 [==============================] - 8s 323ms/step - loss: 0.6088 - accuracy: 0.7655 - val_loss: 0.6110 - val_accuracy: 0.7533
    Epoch 13/20
    24/24 [==============================] - 8s 321ms/step - loss: 0.5949 - accuracy: 0.7956 - val_loss: 0.6111 - val_accuracy: 0.7878
    Epoch 14/20
    24/24 [==============================] - 8s 324ms/step - loss: 0.5859 - accuracy: 0.8142 - val_loss: 0.5993 - val_accuracy: 0.7904
    Epoch 15/20
    24/24 [==============================] - 8s 330ms/step - loss: 0.5791 - accuracy: 0.8318 - val_loss: 0.5961 - val_accuracy: 0.7907
    Epoch 16/20
    24/24 [==============================] - 8s 340ms/step - loss: 0.5739 - accuracy: 0.8421 - val_loss: 0.5942 - val_accuracy: 0.7961
    Epoch 17/20
    24/24 [==============================] - 9s 378ms/step - loss: 0.5701 - accuracy: 0.8497 - val_loss: 0.5933 - val_accuracy: 0.8014
    Epoch 18/20
    24/24 [==============================] - 9s 361ms/step - loss: 0.5665 - accuracy: 0.8589 - val_loss: 0.5958 - val_accuracy: 0.8082
    Epoch 19/20
    24/24 [==============================] - 8s 353ms/step - loss: 0.5630 - accuracy: 0.8681 - val_loss: 0.5931 - val_accuracy: 0.7966
    Epoch 20/20
    24/24 [==============================] - 8s 314ms/step - loss: 0.5614 - accuracy: 0.8702 - val_loss: 0.5925 - val_accuracy: 0.7959
    Process finished with exit code 0

    到此这篇关于手把手教你使用TensorFlow2实现RNN的文章就介绍到这了,更多相关TensorFlow2实现RNN内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

      推荐阅读