手把手教你使用TensorFlow2实现RNN
目录
- 概述
- 权重共享
- 计算过程:
- 案例
- 数据集
- RNN 层
- 获取数据
- 完整代码
概述 RNN (Recurrent Netural Network) 是用于处理序列数据的神经网络. 所谓序列数据, 即前面的输入和后面的输入有一定的联系.
文章图片
权重共享 传统神经网络:
文章图片
【手把手教你使用TensorFlow2实现RNN】RNN:
文章图片
RNN 的权重共享和 CNN 的权重共享类似, 不同时刻共享一个权重, 大大减少了参数数量.
计算过程:
文章图片
计算状态 (State)
文章图片
计算输出:
文章图片
案例
数据集
IBIM 数据集包含了来自互联网的 50000 条关于电影的评论, 分为正面评价和负面评价.
RNN 层
class RNN(tf.keras.Model):def __init__(self, units):super(RNN, self).__init__()# 初始化 [b, 64] (b 表示 batch_size)self.state0 = [tf.zeros([batch_size, units])]self.state1 = [tf.zeros([batch_size, units])]# [b, 80] => [b, 80, 100]self.embedding = tf.keras.layers.Embedding(total_words, embedding_len, input_length=max_review_len)self.rnn_cell0 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)self.rnn_cell1 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)# [b, 80, 100] => [b, 64] => [b, 1]self.out_layer = tf.keras.layers.Dense(1)def call(self, inputs, training=None):""":param inputs: [b, 80]:param training::return:"""state0 = self.state0state1 = self.state1x = self.embedding(inputs)for word in tf.unstack(x, axis=1):out0, state0 = self.rnn_cell0(word, state0, training=training)out1, state1 = self.rnn_cell1(out0, state1, training=training)# [b, 64] -> [b, 1]x = self.out_layer(out1)prob = tf.sigmoid(x)return prob
获取数据
def get_data():# 获取数据(X_train, y_train), (X_test, y_test) = tf.keras.datasets.imdb.load_data(num_words=total_words)# 更改句子长度X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_review_len)X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_review_len)# 调试输出print(X_train.shape, y_train.shape)# (25000, 80) (25000,)print(X_test.shape, y_test.shape)# (25000, 80) (25000,)# 分割训练集train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train))train_db = train_db.shuffle(10000).batch(batch_size, drop_remainder=True)# 分割测试集test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test))test_db = test_db.batch(batch_size, drop_remainder=True)return train_db, test_db
完整代码
import tensorflow as tfclass RNN(tf.keras.Model):def __init__(self, units):super(RNN, self).__init__()# 初始化 [b, 64]self.state0 = [tf.zeros([batch_size, units])]self.state1 = [tf.zeros([batch_size, units])]# [b, 80] => [b, 80, 100]self.embedding = tf.keras.layers.Embedding(total_words, embedding_len, input_length=max_review_len)self.rnn_cell0 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)self.rnn_cell1 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2)# [b, 80, 100] => [b, 64] => [b, 1]self.out_layer = tf.keras.layers.Dense(1)def call(self, inputs, training=None):""":param inputs: [b, 80]:param training::return:"""state0 = self.state0state1 = self.state1x = self.embedding(inputs)for word in tf.unstack(x, axis=1):out0, state0 = self.rnn_cell0(word, state0, training=training)out1, state1 = self.rnn_cell1(out0, state1, training=training)# [b, 64] -> [b, 1]x = self.out_layer(out1)prob = tf.sigmoid(x)return prob# 超参数total_words = 10000# 文字数量max_review_len = 80# 句子长度embedding_len = 100# 词维度batch_size = 1024# 一次训练的样本数目learning_rate = 0.0001# 学习率iteration_num = 20# 迭代次数optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)# 优化器loss = tf.losses.BinaryCrossentropy(from_logits=True)# 损失model = RNN(64)# 调试输出summarymodel.build(input_shape=[None, 64])print(model.summary())# 组合model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"])def get_data():# 获取数据(X_train, y_train), (X_test, y_test) = tf.keras.datasets.imdb.load_data(num_words=total_words)# 更改句子长度X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_review_len)X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_review_len)# 调试输出print(X_train.shape, y_train.shape)# (25000, 80) (25000,)print(X_test.shape, y_test.shape)# (25000, 80) (25000,)# 分割训练集train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train))train_db = train_db.shuffle(10000).batch(batch_size, drop_remainder=True)# 分割测试集test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test))test_db = test_db.batch(batch_size, drop_remainder=True)return train_db, test_dbif __name__ == "__main__":# 获取分割的数据集train_db, test_db = get_data()# 拟合model.fit(train_db, epochs=iteration_num, validation_data=https://www.it610.com/article/test_db, validation_freq=1)
输出结果:
Model: "rnn"到此这篇关于手把手教你使用TensorFlow2实现RNN的文章就介绍到这了,更多相关TensorFlow2实现RNN内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding (Embedding) multiple 1000000
_________________________________________________________________
simple_rnn_cell (SimpleRNNCe multiple 10560
_________________________________________________________________
simple_rnn_cell_1 (SimpleRNN multiple 8256
_________________________________________________________________
dense (Dense) multiple 65
=================================================================
Total params: 1,018,881
Trainable params: 1,018,881
Non-trainable params: 0
_________________________________________________________________
None
(25000, 80) (25000,)
(25000, 80) (25000,)
Epoch 1/20
2021-07-10 17:59:45.150639: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
24/24 [==============================] - 12s 294ms/step - loss: 0.7113 - accuracy: 0.5033 - val_loss: 0.6968 - val_accuracy: 0.4994
Epoch 2/20
24/24 [==============================] - 7s 292ms/step - loss: 0.6951 - accuracy: 0.5005 - val_loss: 0.6939 - val_accuracy: 0.4994
Epoch 3/20
24/24 [==============================] - 7s 297ms/step - loss: 0.6937 - accuracy: 0.5000 - val_loss: 0.6935 - val_accuracy: 0.4994
Epoch 4/20
24/24 [==============================] - 8s 316ms/step - loss: 0.6934 - accuracy: 0.5001 - val_loss: 0.6933 - val_accuracy: 0.4994
Epoch 5/20
24/24 [==============================] - 7s 301ms/step - loss: 0.6934 - accuracy: 0.4996 - val_loss: 0.6933 - val_accuracy: 0.4994
Epoch 6/20
24/24 [==============================] - 8s 334ms/step - loss: 0.6932 - accuracy: 0.5000 - val_loss: 0.6932 - val_accuracy: 0.4994
Epoch 7/20
24/24 [==============================] - 10s 398ms/step - loss: 0.6931 - accuracy: 0.5006 - val_loss: 0.6932 - val_accuracy: 0.4994
Epoch 8/20
24/24 [==============================] - 9s 382ms/step - loss: 0.6930 - accuracy: 0.5006 - val_loss: 0.6931 - val_accuracy: 0.4994
Epoch 9/20
24/24 [==============================] - 8s 322ms/step - loss: 0.6924 - accuracy: 0.4995 - val_loss: 0.6913 - val_accuracy: 0.5240
Epoch 10/20
24/24 [==============================] - 8s 321ms/step - loss: 0.6812 - accuracy: 0.5501 - val_loss: 0.6655 - val_accuracy: 0.5767
Epoch 11/20
24/24 [==============================] - 8s 318ms/step - loss: 0.6381 - accuracy: 0.6896 - val_loss: 0.6235 - val_accuracy: 0.7399
Epoch 12/20
24/24 [==============================] - 8s 323ms/step - loss: 0.6088 - accuracy: 0.7655 - val_loss: 0.6110 - val_accuracy: 0.7533
Epoch 13/20
24/24 [==============================] - 8s 321ms/step - loss: 0.5949 - accuracy: 0.7956 - val_loss: 0.6111 - val_accuracy: 0.7878
Epoch 14/20
24/24 [==============================] - 8s 324ms/step - loss: 0.5859 - accuracy: 0.8142 - val_loss: 0.5993 - val_accuracy: 0.7904
Epoch 15/20
24/24 [==============================] - 8s 330ms/step - loss: 0.5791 - accuracy: 0.8318 - val_loss: 0.5961 - val_accuracy: 0.7907
Epoch 16/20
24/24 [==============================] - 8s 340ms/step - loss: 0.5739 - accuracy: 0.8421 - val_loss: 0.5942 - val_accuracy: 0.7961
Epoch 17/20
24/24 [==============================] - 9s 378ms/step - loss: 0.5701 - accuracy: 0.8497 - val_loss: 0.5933 - val_accuracy: 0.8014
Epoch 18/20
24/24 [==============================] - 9s 361ms/step - loss: 0.5665 - accuracy: 0.8589 - val_loss: 0.5958 - val_accuracy: 0.8082
Epoch 19/20
24/24 [==============================] - 8s 353ms/step - loss: 0.5630 - accuracy: 0.8681 - val_loss: 0.5931 - val_accuracy: 0.7966
Epoch 20/20
24/24 [==============================] - 8s 314ms/step - loss: 0.5614 - accuracy: 0.8702 - val_loss: 0.5925 - val_accuracy: 0.7959
Process finished with exit code 0
推荐阅读
- 由浅入深理解AOP
- 【译】20个更有效地使用谷歌搜索的技巧
- mybatisplus如何在xml的连表查询中使用queryWrapper
- MybatisPlus|MybatisPlus LambdaQueryWrapper使用int默认值的坑及解决
- MybatisPlus使用queryWrapper如何实现复杂查询
- iOS中的Block
- Linux下面如何查看tomcat已经使用多少线程
- 使用composer自动加载类文件
- android|android studio中ndk的使用
- 使用协程爬取网页,计算网页数据大小