C++实现LeetCode(207.课程清单)
[LeetCode] 207. Course Schedule 课程清单
There are a total of n courses you have to take, labeled from 0 to n-1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
Example 1:
Input: 2, [[1,0]]Example 2:
Output: true
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
Input: 2, [[1,0],[0,1]]【C++实现LeetCode(207.课程清单)】Note:
Output: false
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should
also have finished course 1. So it is impossible.
- The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
- You may assume that there are no duplicate edges in the input prerequisites.
- This problem is equivalent to finding if a cycle exists in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
- There are several ways to represent a graph. For example, the input prerequisites is a graph represented by a list of edges. Is this graph representation appropriate?
- Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
- Topological sort could also be done via BFS.
解法一:
class Solution {public:bool canFinish(int numCourses, vector>& prerequisites) {vector > graph(numCourses, vector ()); vector in(numCourses); for (auto a : prerequisites) {graph[a[1]].push_back(a[0]); ++in[a[0]]; }queue q; for (int i = 0; i < numCourses; ++i) {if (in[i] == 0) q.push(i); }while (!q.empty()) {int t = q.front(); q.pop(); for (auto a : graph[t]) {--in[a]; if (in[a] == 0) q.push(a); }}for (int i = 0; i < numCourses; ++i) {if (in[i] != 0) return false; }return true; }};
下面来看 DFS 的解法,也需要建立有向图,还是用二维数组来建立,和 BFS 不同的是,像现在需要一个一维数组 visit 来记录访问状态,这里有三种状态,0表示还未访问过,1表示已经访问了,-1 表示有冲突。大体思路是,先建立好有向图,然后从第一个门课开始,找其可构成哪门课,暂时将当前课程标记为已访问,然后对新得到的课程调用 DFS 递归,直到出现新的课程已经访问过了,则返回 false,没有冲突的话返回 true,然后把标记为已访问的课程改为未访问。代码如下:
解法二:
class Solution {public:bool canFinish(int numCourses, vector>& prerequisites) {vector > graph(numCourses, vector ()); vector visit(numCourses); for (auto a : prerequisites) {graph[a[1]].push_back(a[0]); }for (int i = 0; i < numCourses; ++i) {if (!canFinishDFS(graph, visit, i)) return false; }return true; }bool canFinishDFS(vector >& graph, vector & visit, int i) {if (visit[i] == -1) return false; if (visit[i] == 1) return true; visit[i] = -1; for (auto a : graph[i]) {if (!canFinishDFS(graph, visit, a)) return false; }visit[i] = 1; return true; }};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/207
参考资料:
https://leetcode.com/problems/course-schedule/
https://leetcode.com/problems/course-schedule/discuss/58524/Java-DFS-and-BFS-solution
https://leetcode.com/problems/course-schedule/discuss/58516/Easy-BFS-Topological-sort-Java
https://leetcode.com/problems/course-schedule/discuss/162743/JavaC%2B%2BPython-BFS-Topological-Sorting-O(N-%2B-E)
到此这篇关于C++实现LeetCode(207.课程清单)的文章就介绍到这了,更多相关C++实现课程清单内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
推荐阅读
- 关于QueryWrapper|关于QueryWrapper,实现MybatisPlus多表关联查询方式
- MybatisPlus使用queryWrapper如何实现复杂查询
- python学习之|python学习之 实现QQ自动发送消息
- 孩子不是实现父母欲望的工具——林哈夫
- opencv|opencv C++模板匹配的简单实现
- Node.js中readline模块实现终端输入
- 【Leetcode/Python】001-Two|【Leetcode/Python】001-Two Sum
- java中如何实现重建二叉树
- leetcode|leetcode 92. 反转链表 II
- 人脸识别|【人脸识别系列】| 实现自动化妆