-
- 样例代码
- 写入数据
- 查询数据
- 删除数据
- 样例代码
样例代码 写入数据
功能简介
使用OpenTSDB的接口写入数据。函数genWeatherData()模拟生成的气象数据,函数put()发送气象数据到OpenTSDB服务端。
样例代码
private static String PUT_URL = "http://" + OPENTSDB_IP + ":" + OPENTSDB_PORT + "/api/put/?sync&sync_timeout=60000";
static class DataPoint {public String metric;
public Long timestamp;
public Double value;
public Map tags;
public DataPoint(String metric, Long timestamp, Double value, Map tags) {this.metric = metric;
this.timestamp = timestamp;
this.value = https://www.it610.com/article/value;
this.tags = tags;
}}private String genWeatherData() {List dataPoints = new ArrayList();
Map tags = ImmutableMap.of("city", "Shenzhen", "region", "Longgang");
// Data of air temperaturedataPoints.add(new DataPoint("city.temp", 1498838400L, 28.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498842000L, 27.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498845600L, 27.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498849200L, 27.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498852800L, 27.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498856400L, 27.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498860000L, 27.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498863600L, 27.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498867200L, 29.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498870800L, 30.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498874400L, 32.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498878000L, 32.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498881600L, 33.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498885200L, 33.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498888800L, 32.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498892400L, 32.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498896000L, 31.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498899600L, 30.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498903200L, 30.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498906800L, 29.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498910400L, 29.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498914000L, 29.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498917600L, 28.0, tags));
dataPoints.add(new DataPoint("city.temp", 1498921200L, 28.0, tags));
// Data of humiditydataPoints.add(new DataPoint("city.hum", 1498838400L, 54.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498842000L, 53.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498845600L, 52.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498849200L, 51.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498852800L, 50.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498856400L, 49.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498860000L, 48.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498863600L, 46.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498867200L, 46.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498870800L, 48.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498874400L, 48.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498878000L, 49.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498881600L, 49.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498885200L, 50.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498888800L, 50.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498892400L, 50.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498896000L, 51.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498899600L, 51.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498903200L, 51.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498906800L, 51.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498910400L, 52.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498914000L, 53.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498917600L, 54.0, tags));
dataPoints.add(new DataPoint("city.hum", 1498921200L, 54.0, tags));
Gson gson = new Gson();
return gson.toJson(dataPoints);
}public void put() throws ClientProtocolException, IOException {try (CloseableHttpClient httpClient = HttpClients.createDefault()) {HttpPost httpPost = new HttpPost(PUT_URL);
String weatherData = https://www.it610.com/article/genWeatherData();
StringEntity entity = new StringEntity(weatherData,"ISO-8859-1");
entity.setContentType("application/json");
httpPost.setEntity(entity);
HttpResponse response = httpClient.execute(httpPost);
int statusCode = response.getStatusLine().getStatusCode();
System.out.println("Status Code : " + statusCode);
if (statusCode != HttpStatus.SC_NO_CONTENT) {
System.out.println("Request failed! " + response.getStatusLine());
}}}
查询数据
功能简介
使用OpenTSDB的查询接口读取数据.函数genQueryReq()生成查询请求,函数query()把查询请求发送到OpenTSDB服务端。
样例代码
private static String QUERY_URL = "http://" + OPENTSDB_IP + ":" + OPENTSDB_PORT + "/api/query";
static class Query {
public Long start;
public Long end;
public boolean delete = false;
public List queries;
}static class SubQuery {
public String metric;
public String aggregator;
public SubQuery(String metric, String aggregator) {
this.metric = metric;
this.aggregator = aggregator;
}
}String genQueryReq() {
Query query = new Query();
query.start = 1498838400L;
query.end = 1498921200L;
query.queries = ImmutableList.of(new SubQuery("city.temp", "sum"), new SubQuery("city.hum", "sum"));
//查询内部温度湿度取和
Gson gson = new Gson();
return gson.toJson(query);
}public void query() throws ClientProtocolException, IOException {
try (CloseableHttpClient httpClient = HttpClients.createDefault()) {
HttpPost httpPost = new HttpPost(QUERY_URL);
String queryRequest = genQueryReq();
//System.out.println("Request=" + queryRequest);
StringEntity entity = new StringEntity(queryRequest, "ISO-8859-1");
entity.setContentType("application/json");
httpPost.setEntity(entity);
HttpResponse response = httpClient.execute(httpPost);
int statusCode = response.getStatusLine().getStatusCode();
System.out.println("Status Code : " + statusCode);
if (statusCode != HttpStatus.SC_OK) {
System.out.println("Request failed! " + response.getStatusLine());
}String body = EntityUtils.toString(response.getEntity(), "ISO-8859-1");
System.out.println("Response content : " + body);
}
}
删除数据
【#|OpenTSDB使用总结-(1)】功能简介
使用OpenTSDB的查询接口读取数据,但是要加上delete参数,并且设置为true。函数genQueryReq()生成查询请求,函数query()把查询请求发送到OpenTSDB服务端
样例代码
private static String QUERY_URL = "http://" + OPENTSDB_IP + ":" + OPENTSDB_PORT + "/api/query";
static class Query {
public Long start;
public Long end;
public boolean delete = false;
public List queries;
}static class SubQuery {
public String metric;
public String aggregator;
public SubQuery(String metric, String aggregator) {
this.metric = metric;
this.aggregator = aggregator;
}
}String genQueryReq() {
Query query = new Query();
query.start = 1498838400L;
query.end = 1498921200L;
query.queries = ImmutableList.of(new SubQuery("city.temp", "sum"), new SubQuery("city.hum", "sum"));
Gson gson = new Gson();
return gson.toJson(query);
}String genDeleteReq() {
Query query = new Query();
query.start = 1498838400L;
query.end = 1498921200L;
query.queries = ImmutableList.of(new SubQuery("city.temp", "sum"), new SubQuery("city.hum", "sum"));
query.delete = true;
Gson gson = new Gson();
return gson.toJson(query);
}public void delete() throws ClientProtocolException, IOException {
try (CloseableHttpClient httpClient = HttpClients.createDefault()) {
HttpPost httpPost = new HttpPost(QUERY_URL);
String deleteRequest = genDeleteReq();
StringEntity entity = new StringEntity(deleteRequest, "ISO-8859-1");
entity.setContentType("application/json");
httpPost.setEntity(entity);
HttpResponse response = httpClient.execute(httpPost);
int statusCode = response.getStatusLine().getStatusCode();
System.out.println("Status Code : " + statusCode);
if (statusCode != HttpStatus.SC_OK) {
System.out.println("Request failed! " + response.getStatusLine());
}}
}
推荐阅读
- 数据结构和算法|LeetCode 的正确使用方式
- #|7.分布式事务管理
- #|算法设计与分析(Java实现)——贪心算法(集合覆盖案例)
- #|算法设计与分析(Java实现)—— 动态规划 (0-1 背包问题)
- #|阿尔法点亮LED灯(一)汇编语言
- #|Multimedia
- #|ARM裸机开发(汇编LED灯实验(I.MX6UL芯片))
- 基础课|使用深度优先搜索(DFS)、广度优先搜索(BFS)、A* 搜索算法求解 (n^2 -1) 数码难题,耗时与内存占用(时空复杂度)对比(附((n^2 - 1) 数码问题控
- #|学习笔记 | Ch05 Pandas数据清洗 —— 缺失值、重复值、异常值
- win10|搏一搏 单车变摩托,是时候捣鼓一下家中的小米电视机啦。