【matlab中中图像PSNR和SSIM的计算】网上找了很多关于PSNR和SSIM的计算,很多结果算出来都不一样,公式都是普遍的,如下:
现在总结下造成结果差异的原因。
PSNR的差异:
1.灰度图像:灰度图像比较好计算,只有一个灰度值。
2.彩色图像:
(a)可以将分别计算R,G,B三个通道总和,最后MSE直接在原公式上多除以3就行(opencv官方代码是这么做的,与matlab直接计算结果是一样的)。
(b)将R,G,B格式转换为YCbCr,只计算Y分量(亮度分量),结果会比直接计算要高几个dB。
贴代码,这里是将图片格式转成YCbCr(只计算Y分量):
function [PSNR, MSE] = psnr(X, Y)
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% 计算峰值信噪比PSNR
% 将RGB转成YCbCr格式进行计算
% 如果直接计算会比转后计算值要小2dB左右(当然是个别测试)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
if size(X,3)~=1%判断图像时不是彩色图,如果是,结果为3,否则为1
org=rgb2ycbcr(X);
test=rgb2ycbcr(Y);
Y1=org(:,:,1);
Y2=test(:,:,1);
Y1=double(Y1);
%计算平方时候需要转成double类型,否则uchar类型会丢失数据
Y2=double(Y2);
else%灰度图像,不用转换
Y1=double(X);
Y2=double(Y);
end
if nargin<2
D = Y1;
else
if any(size(Y1)~=size(Y2))
error('The input size is not equal to each other!');
end
D = Y1 - Y2;
end
MSE = sum(D(:).*D(:)) / numel(Y1);
PSNR = 10*log10(255^2 / MSE);
控制台输入下面三条语句:
>> X= imread('C:\Users\Administrator\Desktop\noise_image.jpg');
>> Y= imread('C:\Users\Administrator\Desktop\actruel_image.jpg');
>> psnr(X, Y)
SSIM的差异:同上,如果直接不转换成YCbCr格式,结果会偏高很多( matlab中,SSIM提出者【1】,代码 )。opencv里面是分别计算了R,G,B三个分量的SSIM值( 官方代码 )。最后我将3个值取了个平均(这个值比matlab里面低很多)。
以下代码主要是参考原作者修改的,源代码是直接没有进行格式转换,直接RGB格式,下面我是将他转换成YCbCr计算图片的SSIM
function [mssim, ssim_map] = ssim(img1, img2, K, window, L)%========================================================================
%SSIM Index, Version 1.0
%Copyright(c) 2003 Zhou Wang
%All Rights Reserved.
%
%The author is with Howard Hughes Medical Institute, and Laboratory
%for Computational Vision at Center for Neural Science and Courant
%Institute of Mathematical Sciences, New York University.
%
%----------------------------------------------------------------------
%Permission to use, copy, or modify this software and its documentation
%for educational and research purposes only and without fee is hereby
%granted, provided that this copyright notice and the original authors'
%names ap pearon all copies and supporting documentation. This program
%shall not be used, rewritten, or adapted as the basis of a commercial
%software or hardware product without first obtaining permission of the
%authors. The authors make no representations about the suitability of
%this software for any purpose. It is provided "as is" without express
%or implied warranty.
%----------------------------------------------------------------------
%
%This is an implementation of the algorithm for calculating the
%Structural SIMilarity (SSIM) index between two images. Please refer
%to the following paper:
%
%Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image
%quality assessment: From error visibility to structural similarity"
%IEEE Transactios on Image Processing, vol. 13, no. 4, pp.600-612,
%Apr. 2004.
%
%Kindly report any suggestions or corrections to zhouwang@ieee.org
%
%----------------------------------------------------------------------
%
%Input : (1) img1: the first image being compared
%(2) img2: the second image being compared
%(3) K: constants in the SSIM index formula (see the above
%reference). defualt value: K = [0.01 0.03]
%(4) window: local window for statistics (see the above
%reference). default widnow is Gaussian given by
%window = fspecial('gaussian', 11, 1.5);
%(5) L: dynamic range of the images. default: L = 255
%
%Output: (1) mssim: the mean SSIM index value between 2 images.
%If one of the images being compared is regarded as
%perfect quality, then mssim can be considered as the
%quality measure of the other image.
%If img1 = img2, then mssim = 1.
%(2) ssim_map: the SSIM index map of the test image. The map
%has a smaller size than the input images. The actual size:
%size(img1) - size(window) + 1.
%
%Default Usage:
%Given 2 test images img1 and img2, whose dynamic range is 0-255
%
%[mssim ssim_map] = ssim_index(img1, img2);
%
%Advanced Usage:
%User defined parameters. For example
%
%K = [0.05 0.05];
%window = ones(8);
%L = 100;
%[mssim ssim_map] = ssim_index(img1, img2, K, window, L);
%
%See the results:
%
%mssim%Gives the mssim value
%imshow(max(0, ssim_map).^4)%Shows the SSIM index map
%
%========================================================================if (nargin < 2 | nargin > 5)
ssim_index = -Inf;
ssim_map = -Inf;
return;
endif (size(img1) ~= size(img2))
ssim_index = -Inf;
ssim_map = -Inf;
return;
end[M N] = size(img1);
if (nargin == 2)
if ((M < 11) | (N < 11))% 图像大小过小,则没有意义。
ssim_index = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5);
% 参数一个标准偏差1.5,11*11的高斯低通滤波。
K(1) = 0.01;
% default settings
K(2) = 0.03;
L = 255;
endif (nargin == 3)
if ((M < 11) | (N < 11))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5);
L = 255;
if (length(K) == 2)
if (K(1) < 0 | K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
endif (nargin == 4)
[H W] = size(window);
if ((H*W) < 4 | (H > M) | (W > N))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
L = 255;
if (length(K) == 2)
if (K(1) < 0 | K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
endif (nargin == 5)
[H W] = size(window);
if ((H*W) < 4 | (H > M) | (W > N))
ssim_index = -Inf;
ssim_map = -Inf;
return
end
if (length(K) == 2)
if (K(1) < 0 | K(2) < 0)
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
else
ssim_index = -Inf;
ssim_map = -Inf;
return;
end
endif size(img1,3)~=1%判断图像时不是彩色图,如果是,结果为3,否则为1
org=rgb2ycbcr(img1);
test=rgb2ycbcr(img2);
y1=org(:,:,1);
y2=test(:,:,1);
y1=double(y1);
y2=double(y2);
else
y1=double(img1);
y2=double(img2);
end
img1 = double(y1);
img2 = double(y2);
% automatic downsampling
%f = max(1,round(min(M,N)/256));
%downsampling by f
%use a simple low-pass filter
% if(f>1)
%lpf = ones(f,f);
%lpf = lpf/sum(lpf(:));
%img1 = imfilter(img1,lpf,'symmetric','same');
%img2 = imfilter(img2,lpf,'symmetric','same');
%img1 = img1(1:f:end,1:f:end);
%img2 = img2(1:f:end,1:f:end);
% endC1 = (K(1)*L)^2;
% 计算C1参数,给亮度L(x,y)用。C1=6.502500
C2 = (K(2)*L)^2;
% 计算C2参数,给对比度C(x,y)用。C2=58.522500
window = window/sum(sum(window));
%滤波器归一化操作。mu1= filter2(window, img1, 'valid');
% 对图像进行滤波因子加权valid改成same结果会低一丢丢
mu2= filter2(window, img2, 'valid');
% 对图像进行滤波因子加权mu1_sq = mu1.*mu1;
% 计算出Ux平方值。
mu2_sq = mu2.*mu2;
% 计算出Uy平方值。
mu1_mu2 = mu1.*mu2;
% 计算Ux*Uy值。sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;
% 计算sigmax (标准差)
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;
% 计算sigmay (标准差)
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;
% 计算sigmaxy(标准差)if (C1 > 0 & C2 > 0)
ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
else
numerator1 = 2*mu1_mu2 + C1;
numerator2 = 2*sigma12 + C2;
denominator1 = mu1_sq + mu2_sq + C1;
denominator2 = sigma1_sq + sigma2_sq + C2;
ssim_map = ones(size(mu1));
index = (denominator1.*denominator2 > 0);
ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
index = (denominator1 ~= 0) & (denominator2 == 0);
ssim_map(index) = numerator1(index)./denominator1(index);
end
mssim = mean2(ssim_map);
return
控制台输入以下代码:
>> img1= imread('C:\Users\Administrator\Desktop\noise_image.jpg');
>> img2= imread('C:\Users\Administrator\Desktop\actruel_image.jpg');
>> ssim(img1,img2)
最后说一句,不管是结果如何,只要对比实验用的同一种评价代码工具,无所谓结果和原论文一不一样,问题是很多论文实验都搞不出来滴
参考文献
【1】Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
推荐阅读
- 最优化问题|改进交叉算子的自适应人工蜂群黏菌算法
- matlab|嵌入均衡池的黏菌优化算法
- 最优化问题|加入领导者的黏菌优化算法
- MATLAB图形界面|基于Matlab的汽车出入库计时计费系统
- Matlab旅程|MATLAB的结构化程序设计
- matlab 内存管理 清理内存
- matlab中使用colormap没有效果
- Matlab|圆柱绕流
- MATLAB|Splart-Allmaras湍流模型及MATLAB编程~
- regionprops统计被标记的区域的面积分布,显示区域总数。