隐马尔科夫模型通常用来解决序列标注问题,因此可以将分词问题转化为一个序列标注问题来进行建模。
例如可以对中文句子中得每个字做以下标注:B表示一个词开头的第一个字,E表示一个词结尾的最后一个字,M表示一个词中间的字,S表示一个单字词,那么隐藏状态空间就是{B, E, M, S}。同时对隐藏状态的转移概率可以给出一些先验知识:B和M后面只能是M或者E,S和E后面只能是B或者S。而每个字就是模型中得观测状态,取值空间就是语料中得所有中文字。
首先定义定义模型:
class HMM(object):
def __init__(self):
passdef try_load_model(self, trained):
passdef train(self, path):
passdef viterbi(self, text, states, start_p, trans_p, emit_p):
passdef cut(self, text):
pass
1.
__init__
函数__init__
主要是初始化一些全局信息和成员变量,例如状态集合[‘B’, ‘M’, ‘E’, ‘S’],以及存取概率计算的中间文件hmm_model.pkl。def __init__(self):
import os
# 主要是用于存取算法中间结果,不用每次都训练模型
self.model_file = './data/hmm_model.pkl'
# 状态值集合
self.state_list = ['B', 'M', 'E', 'S']
# 参数加载,用于判断是否需要重新加载model_file
self.load_para = False
2. try_load_model 函数
trained
参数用于判断是否加载中间文件结果。如果加载中间文件,则不用训练语料,可以直接进行分词调用。否则,try_load_model函数初始化初始概率
、状态转移概率
、以及发射概率
等信息。# 用于加载已计算的中间结果,当需要重新训练时,需初始化清空结果
def try_load_model(self, trained):
if trained:
import pickle
with open(self.model_file, 'rb') as f:
self.A_dic = pickle.load(f)
self.B_dic = pickle.load(f)
self.Pi_dic = pickle.load(f)
self.load_para = True
else:
# 状态转移概率(状态->状态的条件概率)
self.A_dic = {}
# 发射概率(状态->词语的条件概率)
self.B_dic = {}
# 状态的初始概率
self.Pi_dic = {}
self.load_para = False
3. train 函数
# 计算转移概率、发射概率以及初始概率
def train(self, path):
# 重置几个概率矩阵
self.try_load_model(False)
# 统计状态出现次数,求p(o)
Count_dic = {}# 初始化参数
def init_parameters():
for state in self.state_list:
self.A_dic[state] = {s: 0.0 for s in self.state_list}
self.Pi_dic[state] = 0.0
self.B_dic[state] = {}
Count_dic[state] = 0def makeLabel(text):
out_text = []
if len(text) == 1:
out_text.append('S')
else:
out_text += ['B'] + ['M'] * (len(text) - 2) + ['E']
return out_textinit_parameters()
line_num = -1
# 观察者集合,主要是字以及标点等
words = set()
with open(path, encoding='utf8') as f:
for line in f:
line_num += 1
line = line.strip()
if not line:
continue
word_list = [i for i in line if i != ' ']
words |= set(word_list)# 更新字的集合
linelist = line.split()
line_state = []
for w in linelist:
line_state.extend(makeLabel(w))
assert len(word_list) == len(line_state)
for k, v in enumerate(line_state):
Count_dic[v] += 1
if k == 0:
self.Pi_dic[v] += 1# 每个句子的第一个字的状态,用于计算初始状态概率
else:
self.A_dic[line_state[k - 1]][v] += 1# 计算转移概率
self.B_dic[line_state[k]][word_list[k]] = \
self.B_dic[line_state[k]].get(word_list[k], 0) + 1.0# 计算发射概率self.Pi_dic = {k: v * 1.0 / line_num for k, v in self.Pi_dic.items()}
self.A_dic = {k: {k1: v1 / Count_dic[k] for k1, v1 in v.items()}
for k, v in self.A_dic.items()}
#加1平滑
self.B_dic = {k: {k1: (v1 + 1) / Count_dic[k] for k1, v1 in v.items()}
for k, v in self.B_dic.items()}
#序列化
import pickle
with open(self.model_file, 'wb') as f:
pickle.dump(self.A_dic, f)
pickle.dump(self.B_dic, f)
pickle.dump(self.Pi_dic, f)return self
train 函数主要用于通过给定的分词语料进行训练。语料的格式为每行一句话,没歌词以空格分隔。train 函数主要就是通过对语料的统计,得到HMM所需要的初始概率、转移概率以及发射概率(观测状态概率)。
4. cut 函数
def viterbi(self, text, states, start_p, trans_p, emit_p):
V = [{}]
path = {}
for y in states:
V[0][y] = start_p[y] * emit_p[y].get(text[0], 0)
path[y] = [y]
for t in range(1, len(text)):
V.append({})
newpath = {}
#检验训练的发射概率矩阵中是否有该字
neverSeen = text[t] not in emit_p['S'].keys() and \
text[t] not in emit_p['M'].keys() and \
text[t] not in emit_p['E'].keys() and \
text[t] not in emit_p['B'].keys()
for y in states:
emitP = emit_p[y].get(text[t], 0) if not neverSeen else 1.0 #设置未知字单独成词
(prob, state) = max(
[(V[t - 1][y0] * trans_p[y0].get(y, 0) *
emitP, y0)
for y0 in states if V[t - 1][y0] > 0])
V[t][y] = prob
newpath[y] = path[state] + [y]
path = newpathif emit_p['M'].get(text[-1], 0)> emit_p['S'].get(text[-1], 0):
(prob, state) = max([(V[len(text) - 1][y], y) for y in ('E','M')])
else:
(prob, state) = max([(V[len(text) - 1][y], y) for y in states])return (prob, path[state])def cut(self, text):
import os
if not self.load_para:
self.try_load_model(os.path.exists(self.model_file))
prob, pos_list = self.viterbi(text, self.state_list, self.Pi_dic, self.A_dic, self.B_dic)
begin, next = 0, 0
for i, char in enumerate(text):
pos = pos_list[i]
if pos == 'B':
begin = i
elif pos == 'E':
yield text[begin: i+1]
next = i+1
elif pos == 'S':
yield char
next = i+1
if next < len(text):
yield text[next:]
cut 函数用于实际的分词操作,通过加载训练好的中间文件hmm_model.pkl,然后调用 veterbi 函数来完成。Veterbi算法在前面的《隐马尔科夫模型的三个基本问题-最可能隐藏状态序列求解》以及提到了,主要是求最大概率的路径。
【用隐马尔科夫模型实现中文分词】5. 分词测试
hmm = HMM()
hmm.train('./data/trainCorpus.txt_utf8')
text = '这是一个令人震惊的消息!'
res = hmm.cut(text)
print(text)
print(str(list(res)))
输出:
这是一个令人震惊的消息!
['这是', '一个', '令人', '震惊', '的', '消息', '!']
附件:
- HMM分词源码和语料
推荐阅读
- 人工智能|hugginface-introduction 案例介绍
- 深度学习|论文阅读(《Deep Interest Evolution Network for Click-Through Rate Prediction》)
- nlp|Keras(十一)梯度带(GradientTape)的基本使用方法,与tf.keras结合使用
- NER|[论文阅读笔记01]Neural Architectures for Nested NER through Linearization
- 深度学习|2019年CS224N课程笔记-Lecture 17:Multitask Learning
- 深度学习|[深度学习] 一篇文章理解 word2vec
- 论文|预训练模型综述2020年三月《Pre-trained Models for Natural Language Processing: A Survey》
- NLP|NLP预训练模型综述
- NLP之文本表示——二值文本表示
- 隐马尔科夫HMM应用于中文分词