启动优化 - 有向无环图

启动优化 - 有向无环图
文章图片

前言 说到 Android 启动优化,大家第一时间可能会想到异步加载。将耗时任务放到子线程加载,等到所有加载任务加载完成之后,再进入首页。
多线程异步加载方案确实是 ok 的。但如果遇到前后依赖的关系呢。比如任务2 依赖于任务 1,这时候要怎么解决呢。
最简单的方案是将任务1 丢到主线程加载,然后再启动多线程异步加载。
如果遇到更复杂的依赖呢。
任务3 依赖于任务 2, 任务 2 依赖于任务 1 呢,这时候你要怎么解决。更复杂的依赖关系呢
启动优化 - 有向无环图
文章图片

总不能将任务 2,任务 3 都放到主线程加载吧,这样多线程加载的意义就不大了。
有没有更好的方案呢?
答案肯定是有的,使用有向无环图。它可以完美解决先后依赖关系。
重要概念 有向无环图(Directed Acyclic Graph, DAG)是有向图的一种,字面意思的理解就是图中没有环。常常被用来表示事件之间的驱动依赖关系,管理任务之间的调度。
启动优化 - 有向无环图
文章图片

顶点:图中的一个点,比如顶点 1,顶点 2。
边:连接两个顶点的线段叫做边,edge。
入度:代表当前有多少边指向它。
在上图中,顶掉 1 的入度是 0,因为没有任何边指向它。顶掉 2 的入度是 1, 因为 顶掉 1 指向 顶掉 2. 同理可得出 5 的入度是 2,因为顶掉 4 和顶点 3 指向它
拓扑排序:拓扑排序是对一个有向图构造拓扑序列的过程。它具有如下特点。

  • 每个顶点出现且只出现一次。
  • 若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面
由于有这个特点,因此常常用有向无环图的数据结构用来解决依赖关系。
上图中,拓扑排序之后,任务2肯定排在任务1之后,因为任务2依赖 任务1, 任务3肯定在任务2之后,因为任务3依赖任务2。
拓扑排序一般有两种算法,第一种是入度表法,第二种是 DFS 方法。下面,让我们一起来看一下怎么实现它。
入度表法 入度表法是根据顶点的入度来判断是否有依赖关系的。若顶点的入度不为 0,则表示它有前置依赖。它也常常被称作 BFS 算法
算法思想
  • 建立入度表,入度为 0 的节点先入队
  • 当队列不为空,进行循环判断
  • 节点出队,添加到结果 list 当中
  • 将该节点的邻居入度减 1
  • 若邻居节点入度为 0,加入队列
  • 若结果 list 与所有节点数量相等,则证明不存在环。否则,存在环
实例讲解
下图所示的有向无环图,采用入度表的方法获取拓扑排序过程。
启动优化 - 有向无环图
文章图片

首先,我们选择入度为 0 的顶点,这里顶点 1 的入度为 0,删除顶点 1 之后,图变成如下。
启动优化 - 有向无环图
文章图片

这时候,顶点 2 和顶点 4 的入度都为 0,我们可以随便删除一个顶点。(这也就是为什么图的拓扑排序不是唯一的原因)。这里我们删除顶点 2,图变成如下:
启动优化 - 有向无环图
文章图片

这时候,我们再删除顶点 4,图变成如下:
启动优化 - 有向无环图
文章图片

选择入度为 0 的顶点 3,删除顶点 3 之后,图标称如下,
启动优化 - 有向无环图
文章图片

最后剩余顶点5,输出顶点5,拓扑排序过程结束。最终的输出结果为:
启动优化 - 有向无环图
文章图片

到此,优先无环图的入度法的流程已经讲解完毕。你清楚了嘛。
代码的话,下期会一起给出。
时间复杂度
设 AOE 网有 n 个事件,e 个活动,则算法的主要执行是:
  • 求每个事件的ve值和vl值:时间复杂度是O(n+e) ;
  • 根据ve值和vl值找关键活动:时间复杂度是O(n+e) ;
因此,整个算法的时间复杂度是O(n+e)
DFS 算法 从上面的入度表法,我们可以知道,要得到有向无环图的拓扑排序,我们的关键点要找到入度为 0 的顶点。然后接着删除该结点的相邻所有边。再遍历所有结点。直到入度为 0 的队列为空。这种方法其实是 BFS。
说到 BFS,我们第一时间就想到 DFS。与 BFS 不同的是,DFS 的关键点在于找到,出度为0的顶点。
总结如下,深度优先搜索过程中,当到达出度为0的顶点时,需要进行回退。在执行回退时记录出度为0的顶点,将其入栈。则最终出栈顺序的逆序即为拓扑排序序列。
算法思想
  • 对图执行深度优先搜索。
  • 在执行深度优先搜索时,若某个顶点不能继续前进,即顶点的出度为0,则将此顶点入栈。
  • 最后得到栈中顺序的逆序即为拓扑排序顺序。
实例讲解
同样,以下图讲解 DFS 算法的过程。
启动优化 - 有向无环图
文章图片

(1) 从顶点 1 开始出发,开始执行深度优先搜索。顺序为1->2->3->5。
(2)深度优先搜索到达顶点5时,顶点5出度为0。将顶点5入栈。
(3)深度优先搜索执行回退,回退至顶点3。此时顶点3的出度为0,将顶点3入栈。
启动优化 - 有向无环图
文章图片

(4)回退至顶点2,顶点2出度为0,顶点2入栈。
启动优化 - 有向无环图
文章图片

(5)回退至顶点1,顶点1可以前进位置为顶点4,顺序为1->4。
(6)顶点4出度为0,顶点4入栈。
启动优化 - 有向无环图
文章图片

(7)回退至顶点1,顶点1出度为0,顶点1入栈。
启动优化 - 有向无环图
文章图片

(8)栈的逆序为1->4->2->3->5。此顺序为拓扑排序结果。
启动优化 - 有向无环图
文章图片

时间复杂度
时间复杂度分析:首先深度优先搜索的时间复杂度为O(V+E),而每次只需将完成访问的顶点存入数组中,需要O(1),因而总复杂度为O(V+E)。
小结 有向无环图的拓扑排序其实并不难,难度中等。通常,我们一般使用 BFS 算法来解决,DFS 算法比较少用。
对于 BFS(入度表法),它的核心思想是
  1. 选择一个没有输入边(入度为0)的源顶点(若有多个则任选一个),
  2. 将它和它的输出边删除。重复源顶点的删除操作,直到不存在入度为0的源顶点为止。
  3. 最终,检测图中的顶点个数,若还有顶点存在则算法无解,否则顶点的删除顺序就是拓扑排序的输出顺序。
https://github.com/gdutxiaoxu...
Android高级开发系统进阶笔记、最新面试复习笔记PDF,我的GitHub
文末 【启动优化 - 有向无环图】您的点赞收藏就是对我最大的鼓励!
欢迎关注我,分享Android干货,交流Android技术。
对文章有何见解,或者有何技术问题,欢迎在评论区一起留言讨论!

    推荐阅读