#|机器学习()-多分类任务混淆矩阵

混淆矩阵的实例 当分类问题是二分问题是,混淆矩阵可以用上面的方法计算。当分类的结果多于两种的时候,混淆矩阵同时适用。
一下面的混淆矩阵为例,我们的模型目的是为了预测样本是什么动物,这是我们的结果:
#|机器学习()-多分类任务混淆矩阵
文章图片

通过混淆矩阵,我们可以得到如下结论:
Accuracy
在总共66个动物中,我们一共预测对了10 + 15 + 20=45个样本,所以准确率(Accuracy)=45/66 = 68.2%。
以猫为例,我们可以将上面的图合并为二分问题:
#|机器学习()-多分类任务混淆矩阵
文章图片

Precision
所以,以猫为例,模型的结果告诉我们,66只动物里有13只是猫,但是其实这13只猫只有10只预测对了。模型认为是猫的13只动物里,有1条狗,两只猪。所以,Precision(猫)= 10/13 = 76.9%
Recall
以猫为例,在总共18只真猫中,我们的模型认为里面只有10只是猫,剩下的3只是狗,5只都是猪。这5只八成是橘猫,能理解。所以,Recall(猫)= 10/18 = 55.6%
Specificity
以猫为例,在总共48只不是猫的动物中,模型认为有45只不是猫。所以,Specificity(猫)= 45/48 = 93.8%。
虽然在45只动物里,模型依然认为错判了6只狗与4只猫,但是从猫的角度而言,模型的判断是没有错的。
(这里是参见了Wikipedia,Confusion Matrix的解释,https://en.wikipedia.org/wiki/Confusion_matrix)
F1-Score
通过公式,可以计算出,对猫而言,F1-Score=(2 * 0.769 *0.556)/( 0.769 +0.556) = 64.54%
【#|机器学习()-多分类任务混淆矩阵】同样,我们也可以分别计算猪与狗各自的二级指标与三级指标值。
————————————————
版权声明:本文为CSDN博主「Orange_Spotty_Cat」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80520839

    推荐阅读