这里写自定义目录标题
- 混淆矩阵的定义
- 精度(precision)和召回率(recall)
混淆矩阵的定义
文章图片
真阳性(True Positive,TP):样本的真实类别是正例,并且模型预测的结果也是正例
真阳性(True Positive,TP):样本的真实类别是正例,并且模型预测的结果也是正例
真阴性(True Negative,TN):样本的真实类别是负例,并且模型将其预测成为负例
假阳性(False Positive,FP):样本的真实类别是负例,但是模型将其预测成为正例
假阴性(False Negative,FN):样本的真实类别是正例,但是模型将其预测成为负例
精度(precision)和召回率(recall)
文章图片
文章图片
文章图片
推荐阅读
- 人脸识别|【人脸识别系列】| 实现自动化妆
- 人工智能|干货!人体姿态估计与运动预测
- 推荐系统论文进阶|CTR预估 论文精读(十一)--Deep Interest Evolution Network(DIEN)
- Python专栏|数据分析的常规流程
- 历史上的今天|【历史上的今天】2 月 16 日(世界上第一个 BBS 诞生;中国计算机教育开端;IBM 机器人赢得智能竞赛)
- 网络|一文彻底搞懂前端监控
- 游戏|2022年如何学习前端前沿技术,破卷而出()
- 分布式|《Python3网络爬虫开发实战(第二版)》内容介绍