有理数的定义 无理数的定义

无理数的定义,而不是无理数的表达形式 。这样的定义可以帮助我们理解一个复杂的函数,比如一个无理数,它的表达形式是什么 。我们可以通过这样的定义,把无理数转化为有理数,从而得到一个新的函数 。举个例子,假设有一个无理数,它的表达形式是一个无理数,那么我们就可以把它转化为理数,再把它转化为无理数 。这样一来,我们就可以在计算机上运行一个新的函数了 。
优质答案1:
无理数相对于有理数(即我们从幼儿园到小学接触到的十进制整数、小数、分数)而言,它没有“道理”,即不符合有理数的属性,不能写成两个整数之比,其数学本质只能为无限不循环小数 。它是在有理数运算法则高度发展后,使数学大厦发生质变时必然产生的 。常见的无理数有开方开不尽的数(如√2、√3)、超越数π和e等 。然而,要想彻底弄清楚无理数的内涵和外延,必须从数学的本质及主要发展过程说起 。

有理数的定义 无理数的定义

文章插图
圆周率π
数学不仅研究现实的物质世界的空间形式和数量关系,还应研究精神世界的空间形式和数量关系,如关于人或动物的情绪、情感、意识等精神现象的数学模型 。举两个简单的例子,如:我感到无限快乐!描述“无限快乐程度”的数学工具只能是无限小数,如果其快乐程度还会持续加深,反映该变化过程时,只能用高等数学里的无穷大(无穷大量) 。又如,这个人几乎没有缺点!描述这类接近完美的人的性格的数字特征的工具只能是大于0小于“一个比1小得多的数”的一个无限小数,如果其性格仍在持续改善,该变化过程只能用高等数学里的无穷小(无穷小量)去描述 。所以,数学科学只能是关于物质和精神世界的相对精确的数形哲学(如:在自然数范围内,1加1只能等于2,该运算法则即为一种数字运算哲学;又如,在欧氏几何里,三角形的内角和只能等于180度,该定理即为一种关于几何图形形状的度量哲学)!这也能解释为什么世界著名火箭专家、我国航天之父钱学森提出了“把数学从自然科学的桎梏中解放出来,改称数学科学,使之与传统的自然科学和社会科学并驾齐驱”的一大构想 。
值得庆幸的是,早在数学发展到无限循环小数(循环节不为0)时,数学家们就已经不知不觉地开始涉足精神世界了,只是没有意识到精神现象在数学领域的重要性而没有建立相应理论而已!因为:就算拿最简单的无限循环小数0.333333……(3循环),即1/3来说,它的数形哲学(或数学科学)意义是表示将一个被选取对象分成三个均匀而相等的子对象,取其中一个子对象,即小学数学上常说的“把单位‘1’平均分成3份,表示这样的1份的数” 。然而,在现实世界里,根本不存在这样的一个子对象!打个很简单的比方,这好比我准备把1元钱平均分给3个小孩,显然,根本就办不到!在现实中,往往是其中的两人都得到3角3分,而另一个只能得到3角4分!可见,无限循环小数只能在我们的头脑中生成,在现实中根本不存在!但哲学家黑格尔说了一句流传至今的名言:“凡是合乎理性的东西都是现实的,凡是现实的东西都是合乎理性的 。”因此,无限循环小数(本质上是一种分数)也有它存在的价值,它至少在近似地描述现实世界的数量关系时,会带来极大的方便,且精度可任意调整,直到较满意为止 。比如,在该比方中,为了确保分配更均匀些,我可以让其中的俩小孩都得到3角3分3厘钱,与另一个小孩得到的3角3分4厘钱相比,相差就较小了 。这个比方还能说明:在现实中,总存在绝对不公平的事!对于这类事情,只能是相对公平!即与预期相比,偏差不大 。且它还有一大优点:书写和计算方便 。比如:该例中的1/3,就比写成0.333333……或0.33、0.333等小数省事多了,且计算也方便了许多,也提高了运算效率 。

推荐阅读