python求解函数导数 python 求导数

如何用python求导数打开python运行环境 。
导入微分的模块包:from sympy import * 。
定义符号变量:x = symbols('x')
定义一个函数:f = x**9
diff = diff(f,x)求导
最后输入diff,即可显示其变量值python求解函数导数了 。
众多python培训视频,尽在python学习网,欢迎在线学习python求解函数导数!
Python如何通过函数导数值求出原函数如f(1)一阶导为2 , f(2)一阶导为4,求原函数表达式你需要知道在任意点多的一阶导数
也就是已知f'(n)=g(n)
那么f(n)=∫g(n)dn
计算这个积分就可以了
用python求解函数的极值,求实现代码python有个符号计算的库叫sympy,可以直接用这个库求导数然后解导数=0的方程,参考代码如下:
from sympy import *
x = symbols('x')
y = (x-3)**2+2*sin(x)-3*x+1
eq = diff(y, x)
solve(eq, x)
用PYTHON求导怎么求#coding:utf-8
#一阶导
def fun1(X, WINDOW = 5):
result = []
for k in range(WINDOW, len(X)-WINDOW):
mid = (X[k+WINDOW]-X[k-WINDOW])/(2*WINDOW)
result.append(mid)
return result
#二阶导
def fun2(X, WINDOW = 5):
result = []
for k in range(WINDOW, len(X)-WINDOW):
mid = (X[k+WINDOW]-2*X[k]+X[k-WINDOW])/(WINDOW*WINDOW)
result.append(mid)
return result
X = [1,2,3,4,5,6,7,8,9,10]
result1 = fun1(X, 3)
result2 = fun2(X, 2)
如上自己写,或者用numpy自带的多项式的n阶导函数 。
得到多项式的n阶导函数:多项式.deriv(m = n)
from numpy import *
X = [1,2,3,4,5,6,7,8,9,10]
result = X.deriv(m = n) #n是导数阶数
python求导用哪个库使用sympy.diff求导
from sympy import *init_printing(use_unicode=True)x = symbols("x")f = log(x)
一阶导数
diff(f, x)
二阶导数可以传入第三个参数 , 表示阶数
diff(f, x, 2)
希望可以帮助到你 。
python3的sympyprint(“字符串”),5/2和5//2的结果是不同的5/2为2.5,5//2为2.
python2需要导入from_future_import division执行普通的除法 。
1/2和1//2的结果0.5和0.
%号为取模运算 。
乘方运算为2**3 , -2**3和-(2**3)是等价的 。
from sympy import*导入库
x,y,z=symbols('x y z'),定义变量
init_printing(use_unicode=True)设置打印方式 。
python的内部常量有pi,
函数simplify,simplify(sin(x)**2 + cos(x)**2)化简结果为1,
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))化简结果为x-1 。化简伽马函数 。simplify(gamma(x)/gamma(x - 2))得(x-2)(x-1) 。
expand((x + 1)**2)展开多项式 。
expand((x + 1)*(x - 2) - (x - 1)*x)
因式分解 。factor(x**2*z + 4*x*y*z + 4*y**2*z)得到z*(x + 2*y)**2
from_future_import division
x,y,z,t=symbols('x y z t')定义变量,
k, m, n = symbols('k m n', integer=True)定义三个整数变量 。
f, g, h = symbols('f g h', cls=Function)定义的类型为函数 。
factor_list(x**2*z + 4*x*y*z + 4*y**2*z)得到一个列表,表示因式的幂,(1, [(z, 1), (x + 2*y, 2)])
expand((cos(x) + sin(x))**2)展开多项式 。
expr = x*y + x - 3 + 2*x**2 - z*x**2 + x**3 , collected_expr = collect(expr, x)将x合并 。将x元素按阶次整合 。
collected_expr.coeff(x, 2)直接取出变量collected_expr的x的二次幂的系数 。
cancel()is more efficient thanfactor().
cancel((x**2 + 2*x + 1)/(x**2 + x))
,expr = (x*y**2 - 2*x*y*z + x*z**2 + y**2 - 2*y*z + z**2)/(x**2 - 1),cancel(expr)
expr = (4*x**3 + 21*x**2 + 10*x + 12)/(x**4 + 5*x**3 + 5*x**2 + 4*x),apart(expr)
asin(1)
trigsimp(sin(x)**2 + cos(x)**2)三角函数表达式化简,
trigsimp(sin(x)**4 - 2*cos(x)**2*sin(x)**2 + cos(x)**4)

推荐阅读