go语言wait go语言walk开发文档( 二 )


用户态阻塞/唤醒
当goroutine因为channel操作或者network I/O而阻塞时(实际上golang已经用netpoller实现了goroutine网络I/O阻塞不会导致M被阻塞,仅阻塞G,这里仅仅是举个栗子) , 对应的G会被放置到某个wait队列(如channel的waitq) , 该G的状态由_Gruning变为_Gwaitting,而M会跳过该G尝试获取并执行下一个G , 如果此时没有可运行的G供M运行,那么M将解绑P,并进入sleep状态;当阻塞的G被另一端的G2唤醒时(比如channel的可读/写通知),G被标记为 , 尝试加入G2所在P的runnext(runnext是线程下一个需要执行的 Goroutine 。),然后再是P的本地队列和全局队列 。
系统调用阻塞
当M执行某一个G时候如果发生了阻塞操作 , M会阻塞,如果当前有一些G在执行 , 调度器会把这个线程M从P中摘除,然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P 。当M系统调用结束时候,这个G会尝试获取一个空闲的P执行,并放入到这个P的本地队列 。如果获取不到P,那么这个线程M变成休眠状态 ,  加入到空闲线程中,然后这个G会被放入全局队列中 。
队列轮转
可见每个P维护着一个包含G的队列 , 不考虑G进入系统调用或IO操作的情况下 , P周期性的将G调度到M中执行,执行一小段时间,将上下文保存下来,然后将G放到队列尾部,然后从队列中重新取出一个G进行调度 。
除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源 , 主要有从系统调用中恢复的G 。之所以P会周期性地查看全局队列 , 也是为了防止全局队列中的G被饿死 。
除了每个P维护的G队列以外 , 还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G 。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死 。
M0
M0是启动程序后的编号为0的主线程 , 这个M对应的实例会在全局变量rutime.m0中,不需要在heap上分配,M0负责执行初始化操作和启动第一个G,在之后M0就和其他的M一样了
G0
G0是每次启动一个M都会第一个创建的goroutine,G0仅用于负责调度G,G0不指向任何可执行的函数,每个M都会有一个自己的G0 , 在调度或系统调用时会使用G0的栈空间,全局变量的G0是M0的G0
一个G由于调度被中断,此后如何恢复?
中断的时候将寄存器里的栈信息,保存到自己的G对象里面 。当再次轮到自己执行时,将自己保存的栈信息复制到寄存器里面,这样就接着上次之后运行了 。
我这里只是根据自己的理解进行了简单的介绍,想要详细了解有关GMP的底层原理可以去看Go调度器 G-P-M 模型的设计者的文档或直接看源码
参考:()
()
golang多线程简单逻辑实现指定个核心最大化使用go语言wait,比如核心总数减一 。
必要go语言wait的库 。
要使用go语言wait的cpu数量,建议不全使用 。
建立管道 。
声明使用go语言wait的cpu数 。
建立互斥关系,本例中主要为了实现所有线程执行完后再执行后续程序 。
创建cpu数减1个线程
后面每个任务结束时要done一个wg,这里根据具体情况加,是循环就在每个循环里加,保证后面能全部done即可
没有缓冲的、阻塞式的往管道传递字符串 。
Wait是等所有线程都执行完 , 即增加的数字被全done掉 。

推荐阅读