提升Python运行速度的5个小技巧pre{overflow-x: auto}
Python 是世界上使用最广泛的编程语言之一 。它是一种解释型高级通用编程语言 , 具有广泛的用途 , 几乎可以将其用于所有事物 。其以简单的语法、优雅的代码和丰富的第三方库而闻名 。python除了有很多优点外,但在速度上还有一个非常大的缺点 。
虽然Python代码运行缓慢 , 但可以通过下面分享的5个小技巧提升Python运行速度!
首先,定义一个计时函数timeshow,通过简单的装饰,可以打印指定函数的运行时间 。
这个函数在下面的例子中会被多次使用 。
def timeshow(func):from time import timedef newfunc(*arg, **kw):t1 = time()res = func(*arg, **kw)t2 = time()print(f"{func.__name__: 10} : {t2-t1:.6f} sec")return resreturn newfunc@timeshowdef test_it():print("hello pytip")test_it()1. 选择合适的数据结构
使用正确的数据结构对python脚本的运行时间有显着影响 。Python 有四种内置的数据结构:
列表 :List
元组 :Tuple
集合 :Set
字典 :Dictionary
但是 , 大多数开发人员在所有情况下都使用列表 。这是不正确的做法,应该根据任务使用合适数据结构 。
运行下面的代码,可以看到元组执行简单检索操作的速度比列表快 。其中dis模块反汇编了一个函数的字节码,这有利于查看列表和元组之间的区别 。
import disdef a():data = https://www.04ip.com/post/[1, 2, 3, 4, 5,6,7,8,9,10]x =data[5]return xdef b():data = (1, 2, 3, 4, 5,6,7,8,9,10)x =data[5]return xprint("-----:使用列表的机器码:------")dis.dis(a)print("-----:使用元组的机器码:------")dis.dis(b)
运行输出:
-----:使用列表的机器码:------
3 0 LOAD_CONST 1 (1)
2 LOAD_CONST 2 (2)
4 LOAD_CONST 3 (3)
6 LOAD_CONST 4 (4)
8 LOAD_CONST 5 (5)
10 LOAD_CONST 6 (6)
12 LOAD_CONST 7 (7)
14 LOAD_CONST 8 (8)
16 LOAD_CONST 9 (9)
18 LOAD_CONST 10 (10)
20 BUILD_LIST 10
22 STORE_FAST 0 (data)
4 24 LOAD_FAST 0 (data)
26 LOAD_CONST 5 (5)
28 BINARY_SUBSCR
30 STORE_FAST 1 (x)
5 32 LOAD_FAST 1 (x)
34 RETURN_VALUE
-----:使用元组的机器码:------
7 0 LOAD_CONST 1 ((1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
2 STORE_FAST 0 (data)
8 4 LOAD_FAST 0 (data)
6 LOAD_CONST 2 (5)
8 BINARY_SUBSCR
10 STORE_FAST 1 (x)
9 12 LOAD_FAST 1 (x)
14 RETURN_VALUE
看下列表的机器码,冗长而多余!
2. 善用强大的内置函数和第三方库
如果你正在使用python并且仍在自己编写一些通用函数(比如加法、减法),那么是在侮辱python 。Python有大量的库和内置函数来帮助你不用编写这些函数 。如果研究下,那么你会惊奇地发现几乎90%的问题已经有第三方包或内置函数来解决 。
可以通过访问官方文档查看所有内置函数 。你也可以在wiki python上找到更多使用内置函数的场景 。
比如,现在我们想合并列表中的所有单词为一个句子 , 比较法自己编写和调用库函数的区别:
# ? 正常人能想到的方法@timeshowdef f1(list):s =""for substring in list:s += substringreturn s# ? pythonic 的方法@timeshowdef f2(list):s = "".join(list)return sl = ["I", "Love", "Python"] * 1000 # 为了看到差异,我们把这个列表放大了f1(l)f2(l)
运行输出:
f1 : 0.000227 sec
f2 : 0.000031 sec
3. 少用循环
用 列表推导式 代替循环
用 迭代器 代替循环
用 filter() 代替循环
减少循环次数 , 精确控制,不浪费CPU
## 返回n以内的可以被7整除的所有数字 。# ? 正常人能想到的方法:@timeshowdef f_loop(n):L=[]for i in range(n):if i % 7 ==0:L.append(i)return L#? 列表推导式@timeshowdef f_list(n):L = [i for i in range(n) if i % 7 == 0]return L# ?迭代器@timeshowdef f_iter(n):L = (i for i in range(n) if i % 7 == 0)return L# ? 过滤器@timeshowdef f_filter(n):L = filter(lambda x: x % 7 == 0, range(n))return L# ? 精确控制循环次数@timeshowdef f_mind(n):L = (i*7 for i in range(n//7))return Ln = 1_000_000f_loop(n)f_list(n)f_iter(n)f_filter(n)f_mind(n)
推荐阅读
- erp系统删除掉单据后怎么找回来,erp删除的数据能恢复吗
- fluttertabbarview白屏,flutter viewpage
- 各种模拟经营游戏,各种模拟经营游戏大全
- 苹果ios9截图,iohone截图
- go语言基础教程51讲 go语言基础入门
- css3按钮炫酷,css简单实用的按钮样式
- chatgpt翻译api,ChatGPT翻译比谷歌翻译好吗
- 没驱动怎么看显卡信息,驱动检测没有显卡
- c语言编写函数统计字符 c语言统计函数怎么写