python序列化函数 python 序列函数

请教python3.1版本下pickle类的dump函数用法#encoding:UTF-8
import pickle
#序列化
def dump_pickle():
user={}
user['id']=1
user['name']='tanweijie'
user['email']='tanweijie@outlook.com'
user['sex']='boy'
#with保证自动关闭文件
#设置文件模式为'wb'来以二进制写模式打开文件
with open('C:/Users/Mr_Tank_/Desktop/user.pickle','wb') as f:
#dump()函数接受一个可序列化的Python数据结构
pickle.dump(user,f)
print('success')
#反序列化
def load_pickle():
with open('C:/Users/Mr_Tank_/Desktop/user.pickle','rb') as f:
user=pickle.load(f)
#user变量是一个字典
print(user)
python常用函数包有哪些?一些python常用函数包:
1、Urllib3
Urllib3是一个 Python 的 HTTP 客户端,它拥有 Python 标准库中缺少的许多功能:
线程安全
连接池
客户端 SSL/TLS 验证
使用分段编码上传文件
用来重试请求和处理 HTTP 重定向的助手
支持 gzip 和 deflate 编码
HTTP 和 SOCKS 的代理支持
2、Six
six 是一个是 Python 2 和 3 的兼容性库 。这个项目旨在支持可同时运行在 Python 2 和 3 上的代码库 。它提供了许多可简化 Python 2 和 3 之间语法差异的函数 。
3、botocore、boto3、s3transfer、awscli
Botocore是 AWS 的底层接口 。Botocore是 Boto3 库(#22)的基础,后者让你可以使用 Amazon S3 和 Amazon EC2 一类的服务 。Botocore 还是 AWS-CLI 的基?。笳呶?AWS 提供统一的命令行界面 。
S3transfer(#7)是用于管理 Amazon S3 传输的 Python 库 。它正在积极开发中,其介绍页面不推荐人们现在使用,或者至少等版本固定下来再用,因为其 API 可能发生变化,在次要版本之间都可能更改 。Boto3、AWS-CLI和其他许多项目都依赖s3transfer 。
4、Pip
pip是“Pip Installs Packages”的首字母递归缩写 。
pip很容易使用 。要安装一个包只需pip install package name即可,而删除包只需pip uninstall package name即可 。
最大优点之一是它可以获取包列表 , 通常以requirements.txt文件的形式获取 。该文件能选择包含所需版本的详细规范 。大多数 Python 项目都包含这样的文件 。
如果结合使用pip与virtualenv(列表中的 #57),就可以创建可预测的隔离环境,同时不会干扰底层系统 , 反之亦然 。
5、Python-dateutil
python-dateutil模块提供了对标准datetime模块的强大扩展 。我的经验是,常规的Python datetime缺少哪些功能,python-dateutil就能补足那一块 。
6、Requests
Requests建立在我们的 #1 库——urllib3基础上 。它让 Web 请求变得非常简单 。相比urllib3来说 , 很多人更喜欢这个包 。而且使用它的最终用户可能也比urllib3更多 。后者更偏底层,并且考虑到它对内部的控制级别,它一般是作为其他项目的依赖项 。
7、Certifi
近年来,几乎所有网站都转向 SSL,你可以通过地址栏中的小锁符号来识别它 。加了小锁意味着与该站点的通信是安全和加密的 , 能防止窃听行为 。
8、Idna
根据其 PyPI 页面,idna提供了“对 RFC5891 中指定的应用程序中国际化域名(IDNA)协议的支持 。”
IDNA的核心是两个函数:ToASCII和ToUnicode 。ToASCII会将国际 Unicode 域转换为 ASCII 字符串 。ToUnicode则逆转该过程 。在IDNA包中,这些函数称为idna.encode()和idna.decode()
9、PyYAML
YAML是一种数据序列化格式 。它的设计宗旨是让人类和计算机都能很容易地阅读代码——人类很容易读写它的内容,计算机也可以解析它 。
PyYAML是 Python 的YAML解析器和发射器,这意味着它可以读写YAML 。它会把任何 Python 对象写成YAML:列表、字典,甚至是类实例都包括在内 。
10、Pyasn1
像上面的IDNA一样,这个项目也非常有用:
ASN.1 类型和 DER/BER/CER 编码(X.208)的纯 Python 实现
所幸这个已有数十年历史的标准有很多信息可用 。ASN.1是 Abstract Syntax Notation One 的缩写,它就像是数据序列化的教父 。它来自电信行业 。也许你知道协议缓冲区或 Apache Thrift?这就是它们的 1984 年版本 。
11、Docutils
Docutils是一个模块化系统,用来将纯文本文档处理为很多有用的格式,例如 HTML、XML 和 LaTeX 等 。Docutils能读取reStructuredText格式的纯文本文档,这种格式是类似于 MarkDown 的易读标记语法 。
12、Chardet
你可以用chardet模块来检测文件或数据流的字符集 。比如说,需要分析大量随机文本时,这会很有用 。但你也可以在处理远程下载的数据,但不知道用的是什么字符集时使用它 。
13、RSA
rsa包是一个纯 Python 的 RSA 实现 。它支持:
加密和解密
签名和验证签名
根据 PKCS#1 1.5 版生成密钥
它既可以用作 Python 库,也能在命令行中使用 。
14、Jmespath
JMESPath,发音为“James path”,使 Python 中的 JSON 更容易使用 。它允许你声明性地指定如何从 JSON 文档中提取元素 。
15、Setuptools
它是用于创建 Python 包的工具 。不过 , 其文档很糟糕 。它没有清晰描述它的用途,并且文档中包含无效链接 。最好的信息源是这个站点,特别是这个创建 Python 包的指南 。
16、Pytz
像dateutils一样,这个库可帮助你处理日期和时间 。有时候,时区处理起来可能很麻烦 。幸好有这样的包,可以让事情变得简单些 。
17、Futures
从 Python 3.2 开始,python 提供current.futures模块,可帮助你实现异步执行 。futures 包是该库适用于 Python 2 的 backport 。它不适用于 Python3 用户,因为 Python 3 原生提供了该模块 。
18、Colorama
使用 Colorama , 你可以为终端添加一些颜色:
更多Python知识请关注Python自学网
python 哪些类型不能被序列化下面是可以被序列化的,反之则是不可序列化的
可以被序列化的类型有:
* None,True 和 False;
* 整数,浮点数 , 复数;
* 字符串,字节流,字节数组;
* 包含可pickle对象的tuples,lists,sets和dictionaries;
* 定义在module顶层的函数:
* 定义在module顶层的内置函数;
* 定义在module顶层的类;
* 拥有__dict__()或__setstate__()的自定义类型;
高端Python自动化测试开发系列直播课
【python序列化函数 python 序列函数】关于python序列化函数和python 序列函数的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站 。

    推荐阅读