Python中的numpy.floor_divide()详细介绍

numpy.floor_divide(arr1, arr2, /, out =None, 其中=true, cast ='同种‘, order =‘?‘, dtype = None):
将第一个数组中的数组元素除以第二个数组中的元素(所有操作均按元素进行)。 arr1和arr2都必须具有相同的形状。
它等效于Python
//运算子
并与Python配对
%
(剩余), 以使
b = a%b + b *(a // b)
直到四舍五入。
参数:

arr1: [array_like]Input array or object which works as numerator.arr2: [array_like]Input array or object which works as denominator. out: [ndarray, None, optional]Output array with same dimensions asInput array, placed with result.**kwargs : Allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function.where: [array_like, optional]True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone.

返回:
An array with floor(x1 / x2)

代码1:arr1除以arr2
# Python program explaining # floor_divide() function import numpy as np# input_array arr1 = [ 2 , 2 , 2 , 2 , 2 ] arr2 = [ 2 , 3 , 4 , 5 , 6 ] print ( "arr1: " , arr1) print ( "arr1: " , arr2)# output_array out = np.floor_divide(arr1, arr2) print ( "\nOutput array : " , out)

输出:
arr1:[2, 2, 2, 2, 2]arr1:[2, 3, 4, 5, 6]Output array :[1 0 0 0 0]

代码2:arr1的元素除以除数
# Python program explaining # floor_divide() function import numpy as np# input_array arr1 = [ 2 , 7 , 3 , 11 , 4 ] divisor = 3 print ( "arr1: " , arr1)# output_array out = np.floor_divide(arr1, divisor) print ( "\nOutput array : " , out)

输出:
arr1:[2, 7, 3, 11, 4]Output array :[0 2 1 3 1]

代码3:如果arr2具有-ve元素, 则floor_divide的处理结果
# Python program explaining # floor_divide() function import numpy as np# input_array arr1 = [ 2 , 6 , 21 , 21 , 12 ] arr2 = [ 2 , 3 , 4 , - 3 , 6 ] print ( "arr1: " , arr1) print ( "arr2: " , arr2)# output_array out = np.floor_divide(arr1, arr2) print ( "\nOutput array : " , out)

输出:
arr1:[2, 6, 21, 21, 12]arr2:[2, 3, 4, -3, 6]Output array :[ 125 -72]

参考文献:
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.floor_divide.html
.
注意怪胎!巩固你的基础Python编程基础课程和学习基础知识。
【Python中的numpy.floor_divide()详细介绍】首先, 你的面试准备可通过以下方式增强你的数据结构概念:Python DS课程。

    推荐阅读