本文概述
- C ++
- Java
- python
- C#
- 的PHP
注意:公用元素不必具有相同的索引。
预期时间复杂度:O(m + n), 其中m是ar1 []中的元素数, n是ar2 []中的元素数。
例子:
Input: ar1[] = {2, 3, 7, 10, 12}
ar2[] = {1, 5, 7, 8}
Output: 35Explanation: 35 is sum of 1 + 5 + 7 + 10 + 12.
We start from the first element of arr2 which is 1, then we
move to 5, then 7.From 7, we switch to ar1 (as 7 is common)
and traverse 10 and 12.Input: ar1[] = {10, 12}
ar2 = {5, 7, 9}
Output: 22Explanation: 22 is the sum of 10 and 12.
Since there is no common element, we need to take all
elements from the array with more sum.Input: ar1[] = {2, 3, 7, 10, 12, 15, 30, 34}
ar2[] = {1, 5, 7, 8, 10, 15, 16, 19}
Output: 122Explanation: 122 is sum of 1, 5, 7, 8, 10, 12, 15, 30, 34
高效方法:这个想法是做一些类似的合并过程合并排序。这涉及计算两个数组的所有公共点之间的元素之和。只要有一个共同点, 就比较两个和并将两个的最大值相加。
算法:
- 创建一些变量, 结果, 总和1, 总和2。将结果初始化为0。还将两个变量sum1和sum2初始化为0。此处, sum1和sum2用于分别将元素的和存储在ar1 []和ar2 []中。这些总和在两个公共点之间。
- 现在运行一个循环以遍历两个数组的元素。遍历时, 按以下顺序比较数组1和数组2的当前元素。
- 如果当前元素数组1小于的当前元素阵列2, 然后更新总和1, 否则, 如果当前元素为阵列2较小, 然后更新总和2.
- 如果当前元素数组1和阵列2相同, 则取sum1和sum2的最大值, 并将其加到结果中。还将公共元素添加到结果中。
- 这一步可以比作两个合并已排序数组, 如果要处理两个当前数组索引中最小的元素, 则可以保证如果有任何公共元素, 它将被一起处理, 因此可以处理两个公共元素之间的元素之和。
C ++
// C++ program to find maximum sum path
#include <
iostream>
using namespace std;
// Utility function to find maximum of two integers
int max( int x, int y) { return (x >
y) ? x : y;
}
// This function returns the sum of elements on maximum path
// from beginning to end
int maxPathSum( int ar1[], int ar2[], int m, int n)
{
// initialize indexes for ar1[] and ar2[]
int i = 0, j = 0;
// Initialize result and current sum through ar1[] and
// ar2[].
int result = 0, sum1 = 0, sum2 = 0;
// Below 3 loops are similar to merge in merge sort
while (i <
m &
&
j <
n)
{
// Add elements of ar1[] to sum1
if (ar1[i] <
ar2[j])
sum1 += ar1[i++];
// Add elements of ar2[] to sum2
else if (ar1[i] >
ar2[j])
sum2 += ar2[j++];
else // we reached a common point
{
// Take the maximum of two sums and add to
// result
result += max(sum1, sum2);
// Update sum1 and sum2 for elements after this
// intersection point
sum1 = 0, sum2 = 0;
// Keep updating result while there are more
// common elements
int temp = i;
while (i <
m &
&
ar1[i] == ar2[j])
sum1 += ar1[i++];
while (j <
n &
&
ar1[temp] == ar2[j])
sum2 += ar2[j++];
result += max(sum1, sum2);
sum1 = 0, sum2 = 0;
}
}
// Add remaining elements of ar1[]
while (i <
m)
sum1 += ar1[i++];
// Add remaining elements of ar2[]
while (j <
n)
sum2 += ar2[j++];
// Add maximum of two sums of remaining elements
result += max(sum1, sum2);
return result;
}
// Driver code
int main()
{
int ar1[] = { 2, 3, 7, 10, 12, 15, 30, 34 };
int ar2[] = { 1, 5, 7, 8, 10, 15, 16, 19 };
int m = sizeof (ar1) / sizeof (ar1[0]);
int n = sizeof (ar2) / sizeof (ar2[0]);
// Function call
cout <
<
"Maximum sum path is "
<
<
maxPathSum(ar1, ar2, m, n);
return 0;
}
Java
// JAVA program to find maximum sum path
class MaximumSumPath
{
// Utility function to find maximum of two integers
int max( int x, int y) { return (x >
y) ? x : y;
}
// This function returns the sum of elements on maximum
// path from beginning to end
int maxPathSum( int ar1[], int ar2[], int m, int n)
{
// initialize indexes for ar1[] and ar2[]
int i = 0 , j = 0 ;
// Initialize result and current sum through ar1[]
// and ar2[].
int result = 0 , sum1 = 0 , sum2 = 0 ;
// Below 3 loops are similar to merge in merge sort
while (i <
m &
&
j <
n)
{
// Add elements of ar1[] to sum1
if (ar1[i] <
ar2[j])
sum1 += ar1[i++];
// Add elements of ar2[] to sum2
else if (ar1[i] >
ar2[j])
sum2 += ar2[j++];
// we reached a common point
else
{
// Take the maximum of two sums and add to
// result
result += max(sum1, sum2);
// Update sum1 and sum2 for elements after
// this intersection point
sum1 = 0 ;
sum2 = 0 ;
// Keep updating result while there are more
// common elements
int temp = i;
while (i <
m &
&
ar1[i] == ar2[j])
sum1 += ar1[i++];
while (j <
n &
&
ar1[temp] == ar2[j])
sum2 += ar2[j++];
result += max(sum1, sum2);
sum1 = 0 ;
sum2 = 0 ;
}
}
// Add remaining elements of ar1[]
while (i <
m)
sum1 += ar1[i++];
// Add remaining elements of ar2[]
while (j <
n)
sum2 += ar2[j++];
// Add maximum of two sums of remaining elements
result += max(sum1, sum2);
return result;
}
// Driver code
public static void main(String[] args)
{
MaximumSumPath sumpath = new MaximumSumPath();
int ar1[] = { 2 , 3 , 7 , 10 , 12 , 15 , 30 , 34 };
int ar2[] = { 1 , 5 , 7 , 8 , 10 , 15 , 16 , 19 };
int m = ar1.length;
int n = ar2.length;
// Function call
System.out.println(
"Maximum sum path is :"
+ sumpath.maxPathSum(ar1, ar2, m, n));
}
}
// This code has been contributed by Mayank Jaiswal
python
# Python program to find maximum sum path
# This function returns the sum of elements on maximum path from
# beginning to end
def maxPathSum(ar1, ar2, m, n):
# initialize indexes for ar1[] and ar2[]
i, j = 0 , 0
# Initialize result and current sum through ar1[] and ar2[]
result, sum1, sum2 = 0 , 0 , 0
# Below 3 loops are similar to merge in merge sort
while (i <
m and j <
n):
# Add elements of ar1[] to sum1
if ar1[i] <
ar2[j]:
sum1 + = ar1[i]
i + = 1
# Add elements of ar2[] to sum1
elif ar1[i] >
ar2[j]:
sum2 + = ar2[j]
j + = 1
else :# we reached a common point
# Take the maximum of two sums and add to result
result + = max (sum1, sum2)
# Update sum1 and sum2 for elements after this intersection point
sum1, sum2 = 0 , 0
# Keep updating result while there are more common elements
temp = i
while i <
m and ar1[i] = = ar2[j]:
sum1 + = ar1[i];
i + = 1
while j<
n and ar1[temp] = = ar2[j]:
sum2 + = ar2[j]
j + = 1
result + = max (sum1, sum2)
sum1 = sum2 = 0 ;
# Add remaining elements of ar1[]
while i <
m:
sum1 + = ar1[i]
i + = 1
# Add remaining elements of b[]
while j <
n:
sum2 + = ar2[j]
j + = 1
# Add maximum of two sums of remaining elements
result + = max (sum1, sum2)
return result
# Driver code
ar1 = [ 2 , 3 , 7 , 10 , 12 , 15 , 30 , 34 ]
ar2 = [ 1 , 5 , 7 , 8 , 10 , 15 , 16 , 19 ]
m = len (ar1)
n = len (ar2)
# Function call
print "Maximum sum path is" , maxPathSum(ar1, ar2, m, n)
# This code is contributed by __Devesh Agrawal__
C#
// C# program for Maximum Sum Path in
// Two Arrays
using System;
class GFG {
// Utility function to find maximum
// of two integers
static int max( int x, int y) { return (x >
y) ? x : y;
}
// This function returns the sum of
// elements on maximum path from
// beginning to end
static int maxPathSum( int [] ar1, int [] ar2, int m, int n)
{
// initialize indexes for ar1[]
// and ar2[]
int i = 0, j = 0;
// Initialize result and current
// sum through ar1[] and ar2[].
int result = 0, sum1 = 0, sum2 = 0;
// Below 3 loops are similar to
// merge in merge sort
while (i <
m &
&
j <
n) {
// Add elements of ar1[] to sum1
if (ar1[i] <
ar2[j])
sum1 += ar1[i++];
// Add elements of ar2[] to sum2
else if (ar1[i] >
ar2[j])
sum2 += ar2[j++];
// we reached a common point
else {
// Take the maximum of two
// sums and add to result
result += max(sum1, sum2);
// Update sum1 and sum2 for
// elements after this
// intersection point
sum1 = 0;
sum2 = 0;
// Keep updating result while
// there are more common
// elements
int temp = i;
while (i <
m &
&
ar1[i] == ar2[j])
sum1 += ar1[i++];
while (j <
n &
&
ar1[temp] == ar2[j])
sum2 += ar2[j++];
result += max(sum1, sum2);
sum1 = 0;
sum2 = 0;
}
}
// Add remaining elements of ar1[]
while (i <
m)
sum1 += ar1[i++];
// Add remaining elements of ar2[]
while (j <
n)
sum2 += ar2[j++];
// Add maximum of two sums of
// remaining elements
result += max(sum1, sum2);
return result;
}
// Driver code
public static void Main()
{
int [] ar1 = { 2, 3, 7, 10, 12, 15, 30, 34 };
int [] ar2 = { 1, 5, 7, 8, 10, 15, 16, 19 };
int m = ar1.Length;
int n = ar2.Length;
// Function call
Console.Write( "Maximum sum path is :"
+ maxPathSum(ar1, ar2, m, n));
}
}
// This code is contributed by nitin mittal.
的PHP
<
?php
// PHP Program to find Maximum Sum
// Path in Two Arrays
// This function returns the sum of
// elements on maximum path
// from beginning to end
function maxPathSum( $ar1 , $ar2 , $m , $n )
{// initialize indexes for
// ar1[] and ar2[]
$i = 0;
$j = 0;
// Initialize result and
// current sum through ar1[]
// and ar2[].
$result = 0;
$sum1 = 0;
$sum2 = 0;
// Below 3 loops are similar
// to merge in merge sort
while ( $i <
$m and $j <
$n )
{// Add elements of
// ar1[] to sum1
if ( $ar1 [ $i ] <
$ar2 [ $j ])
$sum1 += $ar1 [ $i ++];
// Add elements of
// ar2[] to sum2
else if ( $ar1 [ $i ] >
$ar2 [ $j ])
$sum2 += $ar2 [ $j ++];
// we reached a
// common point
else
{// Take the maximum of two
// sums and add to result
$result += max( $sum1 , $sum2 );
// Update sum1 and sum2 for
// elements after this
// intersection point
$sum1 = 0;
$sum2 = 0;
// Keep updating result while
// there are more common
// elements
$temp = $i ;
while ( $i <
$m &
&
$ar1 [ $i ] == $ar2 [ $j ])
$sum1 += $ar1 [ $i ++];
while ( $j <
$n &
&
$ar1 [ $temp ] == $ar2 [ $j ])
$sum2 += $ar2 [ $j ++];
$result += max( $sum1 , $sum2 );
$sum1 = 0;
$sum2 = 0;
}
}
// Add remaining elements of ar1[]
while ( $i <
$m )
$sum1 += $ar1 [ $i ++];
// Add remaining elements of ar2[]
while ( $j <
$n )
$sum2 += $ar2 [ $j ++];
// Add maximum of two sums
// of remaining elements
$result += max( $sum1 , $sum2 );
return $result ;
}
// Driver Code
$ar1 = array (2, 3, 7, 10, 12, 15, 30, 34);
$ar2 = array (1, 5, 7, 8, 10, 15, 16, 19);
$m = count ( $ar1 );
$n = count ( $ar2 );
// Function call
echo "Maximum sum path is "
, maxPathSum( $ar1 , $ar2 , $m , $n );
// This code is contributed by anuj_67.
?>
输出如下
Maximum sum path is 122
复杂度分析:
- 空间复杂度:O(1)。
不需要任何额外的空间, 因此空间复杂度是恒定的。 - 时间复杂度:O(m + n)。
在while循环的每次迭代中, 都会处理两个数组之一的元素。总共有m + n个元素。因此, 时间复杂度为O(m + n)。
推荐阅读
- Python MongoDB如何使用Update_many查询()
- Linux中如何使用userdel命令(用法示例)
- 电子邮件组成和传输协议介绍
- Java中如何实现用户定义的自定义异常()
- PHP如何使用Ds\Deque Capacity()函数(示例)
- 如何使用CSS使div height扩展其内容()
- 专家支招 检查与处理电脑ARP欺骗的办法
- 如何添加个性化的ie多技巧按钮
- 详细说明玩游戏电脑自动断电关机的缘由