Python|Numpy简单使用

```python import numpyarr = numpy.array([[1,2,3,4],[5,6,7,8]]) print(arr) print(arr[1, 2]) print(arr.ndim)# rank 维度数 print(arr.shape)# rows, columns 行列数 print(arr.size)# number of element 元素个数 print(type(arr)) # help(numpy.array)# print(numpy.ones(3, 2))# float 1填充 # print(numpy.zeros(3, 4)) print(numpy.random.random(3))# array of random value [0.0, 1.0) print(numpy.random.random_sample((3, 2)) # 三行两列 [0.0, 1.0) print(numpy.full((3, 3), 12))# new_arr 12填充 print(numpy.full((3, 3), 12, dtype=numpy.float32)) # 指定数值类型 a = arr.copy()# # numpy.loadtxt('')# load from file # numpy.save(a, '')# save to fileprint(numpy.arange(0, 10, 2))# int同range函数 print(numpy.linspace(0, 10, 6))# float[0,10]等分取6个元素0,2,4,6,8,10 # arr.resize(4, 2)# resize return None 就地修改 # numpy.resize(arr, (4, 2))# 返回新的arr print(arr.reshape(2, 4))# resize return new_arr print(arr.ravel())# flattened array return new_arr 扁平化 print(arr.transpose())# transpose an array return new_arr print(arr[0:1:100])# start, end, step 行切片 print(arr[:, 2])# columns 列切片 print(arr[..., 0:2])# columns 列切片 print(arr[0:2, 0:2])# rows, columns, 行列切片# operations + - * / % ** < == > # add, subtract, multiply, divide, remainder, power print(numpy.dot(a.reshape(4, 2), [1, 0]))**dot运算**: 二维行去dot列, columns1 = rows2 # dot operation is not commutativeA . B != B . A print(arr + numpy.array(10))# have same shape otherwise broadcast 广播 print(numpy.array(10) + numpy.ones((3, 2)))# boardcast aa[:, 0:1] += numpy.ones((4, 1), dtype=int) print(numpy.exp(n))# e**n , e = 2.718281828459045 print(numpy.exp(arr))# x *= e print(numpy.square(arr))# x**2 print(numpy.sqrt(arr))# x**(1/2) print(numpy.around(1.5))# Evenly round to the given number of decimals. 四舍六入五取偶 print(numpy.trunc(1.5))# trunc截断, 类似int的操作, 返回float, 1.0 print(numpy.floor(-1.5))# float(floor)math.floor + 0.0 print(numpy.ceil(-1.5))# float(ceil)math.ceil + 0.0 print(numpy.log(arr))# log(x) print(numpy.sum(arr, axis=1), numpy.max(arr), numpy.min(arr)) # axis=1 rows sum 行求和,axis=0 columns sum列求和 print(numpy.cumsum(arr, axis=1))# cumulative sum 累加 print(numpy.mean(arr))# mean value,average 平均数 print(numpy.median(arr))# median 中位数, 从大到小排序取最中间位置的数, 或者中间两个数的平均值 ```

【Python|Numpy简单使用】

    推荐阅读