点击上方蓝色字体,选择“设为星标”
回复"面试"获取更多惊喜
文章图片
Hi,我是王知无,一个大数据领域的原创作者。一、各种整合
放心关注我,获取更多行业的一手消息。
hive集成hudi方法:将hudi jar复制到hive lib下
cp ./packaging/hudi-hadoop-mr-bundle/target/hudi-hadoop-mr-bundle-0.5.2-SNAPSHOT.jar$HIVE_HOME/lib
hive hive 查询hudi 数据主要是在hive中建立外部表数据路径指向hdfs 路径,同时hudi 重写了inputformat 和outpurtformat。因为hudi 在读的数据的时候会读元数据来决定我要加载那些parquet文件,而在写的时候会写入新的元数据信息到hdfs路径下。所以hive 要集成hudi 查询要把编译的jar 包放到HIVE-HOME/lib 下面。否则查询时找不到inputformat和outputformat的类。
hive 外表数据结构如下:
CREATE EXTERNAL TABLE `test_partition`(
`_hoodie_commit_time` string,
`_hoodie_commit_seqno` string,
`_hoodie_record_key` string,
`_hoodie_file_name` string,
`id` string,
`oid` string,
`name` string,
`dt` string,
`isdeleted` string,
`lastupdatedttm` string,
`rowkey` string)
PARTITIONED BY (
`_hoodie_partition_path` string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT
'org.apache.hudi.hadoop.HoodieParquetInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION
'hdfs://hj:9000/tmp/hudi'
TBLPROPERTIES (
'transient_lastDdlTime'='1582111004')
presto 集成 hudi
presto 集成hudi 是基于hive catalog 同样是访问hive 外表进行查询,如果要集成需要把hudi 包copy 到presto hive-hadoop2插件下面。
presto集成hudi方法: 将hudi jar复制到 presto hive-hadoop2下
cp./packaging/hudi-hadoop-mr-bundle/target/hudi-hadoop-mr-bundle-0.5.2-SNAPSHOT.jar$PRESTO_HOME/plugin/hive-hadoop2/
Hudi代码实战
文章图片
文章图片
文章图片
文章图片
文章图片
Copy_on_Write 模式操作(默认模式)
- insert操作(初始化插入数据)
// 不带分区写入
@Test
def insert(): Unit = {
val spark = SparkSession.builder.appName("hudi insert").config("spark.serializer", "org.apache.spark.serializer.KryoSerializer").master("local[3]").getOrCreate()
val insertData = https://www.it610.com/article/spark.read.parquet("/tmp/1563959377698.parquet")
insertData.write.format("org.apache.hudi")
// 设置主键列名
.option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "rowkey")
// 设置数据更新时间的列名
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "lastupdatedttm")
// 并行度参数设置
.option("hoodie.insert.shuffle.parallelism", "2")
.option("hoodie.upsert.shuffle.parallelism", "2")
// table name 设置
.option(HoodieWriteConfig.TABLE_NAME, "test")
.mode(SaveMode.Overwrite)
// 写入路径设置
.save("/tmp/hudi")
}// 带分区写入
@Test
def insertPartition(): Unit = {
val spark = SparkSession.builder.appName("hudi insert").config("spark.serializer", "org.apache.spark.serializer.KryoSerializer").master("local[3]").getOrCreate()
// 读取文本文件转换为df
val insertData = https://www.it610.com/article/Util.readFromTxtByLineToDf(spark,"/home/huangjing/soft/git/experiment/hudi-test/src/main/resources/test_insert_data.txt")
insertData.write.format("org.apache.hudi")
// 设置主键列名
.option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "rowkey")
// 设置数据更新时间的列名
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "lastupdatedttm")
// 设置分区列
.option(DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY, "dt")
// 设置索引类型目前有HBASE,INMEMORY,BLOOM,GLOBAL_BLOOM 四种索引 为了保证分区变更后能找到必须设置全局GLOBAL_BLOOM
.option(HoodieIndexConfig.BLOOM_INDEX_UPDATE_PARTITION_PATH, "true")
// 设置索引类型目前有HBASE,INMEMORY,BLOOM,GLOBAL_BLOOM 四种索引
.option(HoodieIndexConfig.INDEX_TYPE_PROP, HoodieIndex.IndexType.GLOBAL_BLOOM.name())
// 并行度参数设置
.option("hoodie.insert.shuffle.parallelism", "2")
.option("hoodie.upsert.shuffle.parallelism", "2")
.option(HoodieWriteConfig.TABLE_NAME, "test_partition")
.mode(SaveMode.Overwrite)
.save("/tmp/hudi")
}
- upsert操作(数据存在时修改,不存在时新增)
// 不带分区upsert
@Test
def upsert(): Unit = {val spark = SparkSession.builder.appName("hudi upsert").config("spark.serializer", "org.apache.spark.serializer.KryoSerializer").master("local[3]").getOrCreate()
val insertData = https://www.it610.com/article/spark.read.parquet("/tmp/1563959377699.parquet")insertData.write.format("org.apache.hudi")
// 设置主键列名
.option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "rowkey")
// 设置数据更新时间的列名
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "lastupdatedttm")
// 表名称设置
.option(HoodieWriteConfig.TABLE_NAME, "test")
// 并行度参数设置
.option("hoodie.insert.shuffle.parallelism", "2")
.option("hoodie.upsert.shuffle.parallelism", "2")
.mode(SaveMode.Append)
// 写入路径设置
.save("/tmp/hudi");
}// 带分区upsert
@Test
def upsertPartition(): Unit = {val spark = SparkSession.builder.appName("upsert partition").config("spark.serializer", "org.apache.spark.serializer.KryoSerializer").master("local[3]").getOrCreate()
val upsertData = https://www.it610.com/article/Util.readFromTxtByLineToDf(spark,"/home/huangjing/soft/git/experiment/hudi-test/src/main/resources/test_update_data.txt")upsertData.write.format("org.apache.hudi").option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "rowkey")
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "lastupdatedttm")
// 分区列设置
.option(DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY, "dt")
.option(HoodieWriteConfig.TABLE_NAME, "test_partition")
.option(HoodieIndexConfig.INDEX_TYPE_PROP, HoodieIndex.IndexType.GLOBAL_BLOOM.name())
.option("hoodie.insert.shuffle.parallelism", "2")
.option("hoodie.upsert.shuffle.parallelism", "2")
.mode(SaveMode.Append)
.save("/tmp/hudi");
}
- delete操作(删除数据)
@Test
def delete(): Unit = {
val spark = SparkSession.builder.appName("delta insert").config("spark.serializer", "org.apache.spark.serializer.KryoSerializer").master("local[3]").getOrCreate()
val deleteData = https://www.it610.com/article/spark.read.parquet("/tmp/1563959377698.parquet")
deleteData.write.format("com.uber.hoodie")
// 设置主键列名
.option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "rowkey")
// 设置数据更新时间的列名
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "lastupdatedttm")
// 表名称设置
.option(HoodieWriteConfig.TABLE_NAME, "test")
// 硬删除配置
.option(DataSourceWriteOptions.PAYLOAD_CLASS_OPT_KEY, "org.apache.hudi.EmptyHoodieRecordPayload")
}
删除操作分为软删除和硬删除配置在这里查看:http://hudi.apache.org/cn/docs/0.5.0-writing_data.html#%E5%88%A0%E9%99%A4%E6%95%B0%E6%8D%AE
- query操作(查询数据)
@Test
def query(): Unit = {
val basePath = "/tmp/hudi"
val spark = SparkSession.builder.appName("query insert").config("spark.serializer", "org.apache.spark.serializer.KryoSerializer").master("local[3]").getOrCreate()
val tripsSnapshotDF = spark.
read.
format("org.apache.hudi").
load(basePath + "/*/*")tripsSnapshotDF.show()
}
- 同步至Hive
@Test
def hiveSync(): Unit = {
val spark = SparkSession.builder.appName("delta hiveSync").config("spark.serializer", "org.apache.spark.serializer.KryoSerializer").master("local[3]").getOrCreate()
val upsertData = https://www.it610.com/article/Util.readFromTxtByLineToDf(spark,"/home/huangjing/soft/git/experiment/hudi-test/src/main/resources/hive_sync.txt")upsertData.write.format("org.apache.hudi")
// 设置主键列名
.option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY, "rowkey")
// 设置数据更新时间的列名
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY, "lastupdatedttm")
// 分区列设置
.option(DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY, "dt")
// 设置要同步的hive库名
.option(DataSourceWriteOptions.HIVE_DATABASE_OPT_KEY, "hj_repl")
// 设置要同步的hive表名
.option(DataSourceWriteOptions.HIVE_TABLE_OPT_KEY, "test_partition")
// 设置数据集注册并同步到hive
.option(DataSourceWriteOptions.HIVE_SYNC_ENABLED_OPT_KEY, "true")
// 设置当分区变更时,当前数据的分区目录是否变更
.option(HoodieIndexConfig.BLOOM_INDEX_UPDATE_PARTITION_PATH, "true")
// 设置要同步的分区列名
.option(DataSourceWriteOptions.HIVE_PARTITION_FIELDS_OPT_KEY, "dt")
// 设置jdbc 连接同步
.option(DataSourceWriteOptions.HIVE_URL_OPT_KEY, "jdbc:hive2://localhost:10000")
// hudi表名称设置
.option(HoodieWriteConfig.TABLE_NAME, "test_partition")
// 用于将分区字段值提取到Hive分区列中的类,这里我选择使用当前分区的值同步
.option(DataSourceWriteOptions.HIVE_PARTITION_EXTRACTOR_CLASS_OPT_KEY, "org.apache.hudi.hive.MultiPartKeysValueExtractor")
// 设置索引类型目前有HBASE,INMEMORY,BLOOM,GLOBAL_BLOOM 四种索引 为了保证分区变更后能找到必须设置全局GLOBAL_BLOOM
.option(HoodieIndexConfig.INDEX_TYPE_PROP, HoodieIndex.IndexType.GLOBAL_BLOOM.name())
// 并行度参数设置
.option("hoodie.insert.shuffle.parallelism", "2")
.option("hoodie.upsert.shuffle.parallelism", "2")
.mode(SaveMode.Append)
.save("/tmp/hudi");
}@Test
def hiveSyncMergeOnReadByUtil(): Unit = {
val args: Array[String] = Array("--jdbc-url",
"jdbc:hive2://hj:10000",
"--partition-value-extractor",
"org.apache.hudi.hive.MultiPartKeysValueExtractor",
"--user", "hive", "--pass", "hive",
"--partitioned-by", "dt", "--base-path",
"/tmp/hudi_merge_on_read", "--database", "hj_repl",
"--table", "test_partition_merge_on_read")
HiveSyncTool.main(args)
}
这里可以选择使用spark 或者hudi-hive包中的hiveSynTool进行同步,hiveSynTool类其实就是run_sync_tool.sh运行时调用的。hudi 和hive同步时保证hive目标表不存在,同步其实就是建立外表的过程。
- Hive查询读优化视图和增量视图
@Test
def hiveViewRead(): Unit = {
// 目标表
val sourceTable = "test_partition"
// 增量视图开始时间点
val fromCommitTime = "20200220094506"
// 获取当前增量视图后几个提交批次
val maxCommits = "2"Class.forName("org.apache.hive.jdbc.HiveDriver")
val prop = new Properties()
prop.put("user", "hive")
prop.put("password", "hive")
val conn = DriverManager.getConnection("jdbc:hive2://localhost:10000/hj_repl", prop)
val stmt = conn.createStatement
// 这里设置增量视图参数
stmt.execute("set hive.input.format=org.apache.hudi.hadoop.hive.HoodieCombineHiveInputFormat")
// Allow queries without partition predicate
stmt.execute("set hive.strict.checks.large.query=false")
// Dont gather stats for the table created
stmt.execute("set hive.stats.autogather=false")
// Set the hoodie modie
stmt.execute("set hoodie." + sourceTable + ".consume.mode=INCREMENTAL")
// Set the from commit time
stmt.execute("set hoodie." + sourceTable + ".consume.start.timestamp=" + fromCommitTime)
// Set number of commits to pull
stmt.execute("set hoodie." + sourceTable + ".consume.max.commits=" + maxCommits)val rs = stmt.executeQuery("select * from " + sourceTable)
val metaData = https://www.it610.com/article/rs.getMetaData
val count = metaData.getColumnCountwhile (rs.next()) {
for (i <- 1 to count) {
println(metaData.getColumnName(i) +":" + rs.getObject(i).toString)
}
println("-----------------------------------------------------------")
}rs.close()
stmt.close()
conn.close()}
- Presto查询读优化视图(暂不支持增量视图)
@Test
def prestoViewRead(): Unit = {
// 目标表
val sourceTable = "test_partition"
Class.forName("com.facebook.presto.jdbc.PrestoDriver")
val conn = DriverManager.getConnection("jdbc:presto://hj:7670/hive/hj_repl", "hive", null)
val stmt = conn.createStatement
val rs = stmt.executeQuery("select * from" + sourceTable)
val metaData = https://www.it610.com/article/rs.getMetaData
val count = metaData.getColumnCountwhile (rs.next()) {
for (i <- 1 to count) {
println(metaData.getColumnName(i) +":" + rs.getObject(i).toString)
}
println("-----------------------------------------------------------")
}rs.close()
stmt.close()
conn.close()
}
问题整理
- merg on read 问题
配置为option(HoodieTableConfig.HOODIE_TABLE_TYPE_PROP_NAME, HoodieTableType.MERGE_ON_READ.name())将不会生效。
- spark pom 依赖问题
- hive视图同步问题
二、集成Spark SQL 1. 摘要
集成Spark SQL后,会极大方便用户对Hudi表的DDL/DML操作,下面就来看看如何使用Spark SQL操作Hudi表。
2. 环境准备
首先需要将PR拉取到本地打包,生成SPARK_BUNDLE_JAR(hudi-spark-bundle_2.11-0.9.0-SNAPSHOT.jar)包
2.1 启动spark-sql
在配置完spark环境后可通过如下命令启动spark-sql
spark-sql --jars $PATH_TO_SPARK_BUNDLE_JAR
--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer'
--conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension'
2.2 设置并发度
由于Hudi默认upsert/insert/delete的并发度是1500,对于演示的小规模数据集可设置更小的并发度。
set hoodie.upsert.shuffle.parallelism = 1;
set hoodie.insert.shuffle.parallelism = 1;
set hoodie.delete.shuffle.parallelism = 1;
同时设置不同步Hudi表元数据
set hoodie.datasource.meta.sync.enable=false;
3. Create Table
使用如下SQL创建表
create table test_hudi_table (
id int,
name string,
price double,
ts long,
dt string
) using hudi
partitioned by (dt)
options (
primaryKey = 'id',
type = 'mor'
)
location 'file:///tmp/test_hudi_table'
说明:表类型为MOR,主键为id,分区字段为dt,合并字段默认为ts。
创建Hudi表后查看创建的Hudi表
show create table test_hudi_table
文章图片
4. Insert Into
4.1 Insert
使用如下SQL插入一条记录
INSERT INTO test_hudi_table
SELECT 1 AS id, 'hudi' AS name, 10 AS price, 1000 AS ts, '2021-05-05' AS dt
insert完成后查看Hudi表本地目录结构,生成的元数据、分区和数据与Spark Datasource写入均相同。
文章图片
4.2 Select
使用如下SQL查询Hudi表数据
select * from test_hudi_table
查询结果如下
文章图片
5. Update
5.1 Update
使用如下SQL将id为1的price字段值变更为20
update test_hudi_table set price = 20.0 where id = 1
5.2 Select
再次查询Hudi表数据
select * from test_hudi_table
查询结果如下,可以看到price已经变成了20.0
文章图片
查看Hudi表的本地目录结构如下,可以看到在update之后又生成了一个deltacommit,同时生成了一个增量log文件。
文章图片
6. Delete
6.1 Delete
使用如下SQL将id=1的记录删除
delete from test_hudi_table where id = 1
查看Hudi表的本地目录结构如下,可以看到delete之后又生成了一个deltacommit,同时生成了一个增量log文件。
文章图片
6.2 Select
再次查询Hudi表
select * from test_hudi_table;
查询结果如下,可以看到已经查询不到任何数据了,表明Hudi表中已经不存在任何记录了。
文章图片
7. Merge Into
7.1 Merge Into Insert
使用如下SQL向test_hudi_table插入数据
merge into test_hudi_table as t0
using (
select 1 as id, 'a1' as name, 10 as price, 1000 as ts, '2021-03-21' as dt
) as s0
on t0.id = s0.id
when not matched and s0.id % 2 = 1 then insert *
7.2 Select
查询Hudi表数据
select * from test_hudi_table
【大数据|「Hudi系列」Apache Hudi入门指南 | SparkSQL+Hive+Presto集成】查询结果如下,可以看到Hudi表中存在一条记录
文章图片
7.3 Merge Into Update
使用如下SQL更新数据
merge into test_hudi_table as t0
using (
select 1 as id, 'a1' as name, 12 as price, 1001 as ts, '2021-03-21' as dt
) as s0
on t0.id = s0.id
when matched and s0.id % 2 = 1 then update set *
7.4 Select
查询Hudi表
select * from test_hudi_table
查询结果如下,可以看到Hudi表中的分区已经更新了
文章图片
7.5 Merge Into Delete
使用如下SQL删除数据
merge into test_hudi_table t0
using (
select 1 as s_id, 'a2' as s_name, 15 as s_price, 1001 as s_ts, '2021-03-21' as dt
) s0
on t0.id = s0.s_id
when matched and s_ts = 1001 then delete
查询结果如下,可以看到Hudi表中已经没有数据了
文章图片
8. 删除表
使用如下命令删除Hudi表
drop table test_hudi_table;
使用show tables查看表是否存在
show tables;
可以看到已经没有表了
文章图片
9. 总结
通过上面示例简单展示了通过Spark SQL Insert/Update/Delete Hudi表数据,通过SQL方式可以非常方便地操作Hudi表,降低了使用Hudi的门槛。另外Hudi集成Spark SQL工作将继续完善语法,尽量对标Snowflake和BigQuery的语法,如插入多张表(INSERT ALL WHEN condition1 INTO t1 WHEN condition2 into t2),变更Schema以及CALL Cleaner、CALL Clustering等Hudi表服务。
如果这个文章对你有帮助,不要忘记 「在看」 「点赞」 「收藏」 三连啊喂!
文章图片
文章图片
2022年全网首发|大数据专家级技能模型与学习指南(胜天半子篇)
互联网最坏的时代可能真的来了
我在B站读大学,大数据专业
我们在学习Flink的时候,到底在学习什么?
193篇文章暴揍Flink,这个合集你需要关注一下
Flink生产环境TOP难题与优化,阿里巴巴藏经阁YYDS
Flink CDC我吃定了耶稣也留不住他!| Flink CDC线上问题小盘点
我们在学习Spark的时候,到底在学习什么?
在所有Spark模块中,我愿称SparkSQL为最强!
硬刚Hive | 4万字基础调优面试小总结
数据治理方法论和实践小百科全书
标签体系下的用户画像建设小指南
4万字长文 | ClickHouse基础&实践&调优全视角解析
【面试&个人成长】2021年过半,社招和校招的经验之谈
大数据方向另一个十年开启 |《硬刚系列》第一版完结
我写过的关于成长/面试/职场进阶的文章
当我们在学习Hive的时候在学习什么?「硬刚Hive续集」
推荐阅读
- 更改Apollo数据库为oracle
- 【JAVA并发编程】读写锁ReentrantReadWriteLock的实现分析
- 分治算法解决汉诺塔问题(Java实现)
- MySQL 字段约束
- mysql|MySQL经典50题
- java|java使用easyExcel读写excel
- IDEA|IDEA -- 类postman插件的使用
- 脚本部署mysql
- 大数据面试吹牛草稿V2.0