Java 并发编程实战-创建和执行任务的最佳实践

亦余心之所善兮,虽九死其犹未悔。这篇文章主要讲述Java 并发编程实战-创建和执行任务的最佳实践相关的知识,希望能为你提供帮助。
若无法通过并行流实现并发,则必须创建并运行自己的任务。运行任务的理想java 8方法就是CompletableFuture。
Java并发的历史始于非常原始和有问题的机制,并且充满各种尝试的优化。本文将展示一个规范形式,表示创建和运行任务的最简单,最好的方法。
Java初期通过直接创建自己的Thread对象来使用线程,甚至子类化来创建特定“任务线程”对象。手动调用构造函数并自己启动线程。创建所有这些线程的开销变得非常重要,现在不鼓励。Java 5中,添加了类来为你处理线程池。可以将任务创建为单独的类型,然后将其交给ExecutorService运行,而不是为每种不同类型的任务创建新的Thread子类型。ExecutorService为你管理线程,并在运行任务后重新循环线程而不是丢弃线程。
创建任务

Java 并发编程实战-创建和执行任务的最佳实践

文章图片

这只是个包含run()方法的Runnable类。它没有包含实际运行任务的机制。使用Nap类中的“sleep”:
【Java 并发编程实战-创建和执行任务的最佳实践】
Java 并发编程实战-创建和执行任务的最佳实践

文章图片

第二个构造函数在超时的时候,会显示一条消息。TimeUnit.MILLISECONDS.sleep():获取“当前线程”并在参数中将其置于休眠状态,这意味着该线程被挂起。这并不意味着底层处理器停止。os将其切换到其他任务,例如在你的计算机上运行另一个窗口。OS任务管理器定期检查sleep()是否超时。当它执行时,线程被“唤醒”并给予更多处理时间。
sleep()抛已检查的InterruptedException:通过突然中断它们来终止任务。由于它往往会产生不稳定状态,所以不鼓励用来终止。但我们必须在需要或仍发生终止的情况下捕获该异常。


执行任务
Java 并发编程实战-创建和执行任务的最佳实践

文章图片

结果:
All tasks submitted
main awaiting termination
main awaiting termination
NapTask[0] pool-1-thread-1
main awaiting termination
NapTask[1] pool-1-thread-1
main awaiting termination
NapTask[2] pool-1-thread-1
main awaiting termination
NapTask[3] pool-1-thread-1
main awaiting termination
NapTask[4] pool-1-thread-1
main awaiting termination
NapTask[5] pool-1-thread-1
main awaiting termination
NapTask[6] pool-1-thread-1
main awaiting termination
NapTask[7] pool-1-thread-1
main awaiting termination
NapTask[8] pool-1-thread-1
main awaiting termination
NapTask[9] pool-1-thread-1

创建十个NapTasks并将它们提交给ExecutorService,它们开始自己运行。然而,期间main()继续运行。当运行至??exec.shutdown(); ??时,main告诉ExecutorService完成已提交的任务,但不再接受新任务。此时,这些任务仍在运行,必须等到它们在退出main()之前完成。这是通过检查??exec.isTerminated()??来实现:在所有任务完成后为true。
main()中线程的名称是main,且只有一个其他线程pool-1-thread-1。此外,交错输出显示两个线程确实在同时运行。
若仅调用??exec.shutdown()??,程序将完成所有任务,若尝试提交新任务将抛RejectedExecutionException。
Java 并发编程实战-创建和执行任务的最佳实践

文章图片
exec.shutdown()的替代方法exec.shutdownNow():除了不接受新任务,还会尝试通过中断任务来停止任何当前正在运行的任务。同样,中断是错误的,容易出错,不鼓励!


使用更多线程
使用线程的重点几乎总是更快地完成任务,那为何要限制自己使用SingleThreadExecutor?Executors还给了我们更多选项,如CachedThreadPool:
Java 并发编程实战-创建和执行任务的最佳实践

文章图片

运行该程序时,你会发现它完成得更快。这是有道理的,而不是使用相同线程来顺序运行每个任务,每个任务都有自己的线程,所以它们并行运行。似乎没有缺点,很难看出为什么有人会使用SingleThreadExecutor。
要理解这个问题,需要一个更复杂任务:
Java 并发编程实战-创建和执行任务的最佳实践

文章图片

用CachedThreadPool试一下:
Java 并发编程实战-创建和执行任务的最佳实践

文章图片

输出结果:
0 pool-1-thread-1 195
3 pool-1-thread-4 400
2 pool-1-thread-3 300
1 pool-1-thread-2 200
5 pool-1-thread-6 600
6 pool-1-thread-7 700
4 pool-1-thread-5 500
7 pool-1-thread-3 800
8 pool-1-thread-5 900
9 pool-1-thread-7 1000

输出不是期望的,并且从一次运行到下一次运行会有所不同。问题是所有的任务都试图写入val的单个实例,并且他们正在踩着彼此的脚趾。这样的类就不是线程安全的。
看SingleThreadExecutor表现怎样:
Java 并发编程实战-创建和执行任务的最佳实践

文章图片

输出结果:
0 pool-1-thread-1 100
1 pool-1-thread-1 200
2 pool-1-thread-1 300
3 pool-1-thread-1 400
4 pool-1-thread-1 500
5 pool-1-thread-1 600
6 pool-1-thread-1 700
7 pool-1-thread-1 800
8 pool-1-thread-1 900
9 pool-1-thread-1 1000

每次都得到一致结果,虽然InterferingTask缺乏线程安全性。这是SingleThreadExecutor的主要好处 - 因为它一次运行一个任务,这些任务不会相互干扰,等于强加了线程安全性。这种现象称为线程限制,因为在单线程上运行任务限制了它们的影响。【线程限制】限制了加速,但能节省很多困难的调试和重写。


产生结果
因为InterferingTask是Runnable,无返回值,因此只能使用副作用产生结果 - 操纵缓冲值而不是返回结果。副作用是并发编程中的主要问题之一,因为我们看到了CachedThreadPool2.java。InterferingTask中的val被称为可变共享状态,这就是问题:多个任务同时修改同一个变量会产生竞争。结果取决于首先在终点线上执行哪个任务,并修改变量(以及其他可能性的各种变化)。
避免竞争条件的最好方法是避免可变的共享状态,可称为自私的孩子原则:什么都不分享。
使用InterferingTask,最好删除副作用并返回任务结果。为此,我们创建Callable而非Runnable:
Java 并发编程实战-创建和执行任务的最佳实践

文章图片
call()完全独立于所有其他CountingTasks生成其结果,这意味着没有可变的共享状态。
Java 并发编程实战-创建和执行任务的最佳实践

文章图片

输出结果:
0 pool-1-thread-1 100
2 pool-1-thread-3 100
1 pool-1-thread-2 100
3 pool-1-thread-4 100
4 pool-1-thread-5 100
5 pool-1-thread-6 100
6 pool-1-thread-7 100
7 pool-1-thread-5 100
8 pool-1-thread-7 100
9 pool-1-thread-6 100
sum = 1000

所有任务完成后,invokeAll()才会返回一个Future列表,每个任务一个Future。Future是Java 5中引入的机制,允许提交任务而无需等待它完成。
Java 并发编程实战-创建和执行任务的最佳实践

文章图片

结果:
99 pool-1-thread-1 100
100

但这意味着,在CachedThreadPool3.java中,Future似乎是多余的,因为invokeAll()在所有任务完成前都不会返回。但此处的Future并非用于延迟结果,而是捕获任何可能的异常。
在CachedThreadPool3.java.get()抛异常,因此extractResult()在Stream中执行此提取。因为调用get()时,Future会阻塞,所以它只能解决【等待任务完成】的问题。最终,Futures被认为是一种无效解决方案,现在不鼓励,支持Java 8的CompletableFuture,将在后面探讨。当然,你仍会在遗留库中遇到Futures。
可使用并行Stream,更简单优雅解决该问题:
Java 并发编程实战-创建和执行任务的最佳实践

文章图片

输出结果:
4 ForkJoinPool.commonPool-worker-15 100
1 ForkJoinPool.commonPool-worker-11 100
5 ForkJoinPool.commonPool-worker-1 100
2 ForkJoinPool.commonPool-worker-9 100
0 ForkJoinPool.commonPool-worker-6 100
3 ForkJoinPool.commonPool-worker-8 100
9 ForkJoinPool.commonPool-worker-13 100
6 main 100
8 ForkJoinPool.commonPool-worker-2 100
7 ForkJoinPool.commonPool-worker-4 100
1000

这更容易理解,需要做的就是将parallel()插入到其他顺序操作中,然后一切都在同时运行。


Lambda和方法引用作为任务
使用lambdas和方法引用,你不仅限于使用Runnables和Callables。因为Java 8通过匹配签名来支持lambda和方法引用(即支持结构一致性),所以我们可以将不是Runnables或Callables的参数传递给ExecutorService:
Java 并发编程实战-创建和执行任务的最佳实践

文章图片

输出结果:
Lambda1
NotRunnable
Lambda2
NotCallable

这里,前两个submit()调用可以改为调用execute()。所有submit()调用都返回Futures,你可以在后两次调用的情况下提取结果。

    推荐阅读